COMPUTER PROGRAM SYSTEM
STANDARDS

project

-

£ &
MC 102

project
mercury

N

PROGRAM SYSTEM
STANDARDS

| prepared for
National Aeronautics and Space Administration
Contract No. NAS 1-430

1 march 1961

International Business Machines Corporation

in association with

WESTERN ELECTRIC COMPANY, INC.

MC 102 .

[uist oF EFFecTIvE PaGES |

* The asterisk indicates pages changed, added or deleted by the current change.

2y

MC 102

TABLE OF CONTENTS

Section 1. INTRODUCTION
1.1 SHARE OPERATING SYSTEM (SOS)v. ...
1.2 SHARE COMPILER-ASSEMBLER-TRANSLATOR (SCAT)
1,21 Compiler
1.2.2 Lister it ittt it e e e e
1.23 Modifyand Loadt enunen.
1.3 THEDEBUGGING SYSTEMt enun..
1.4 INPUT/OUTPUT SYSTEMot i ittt iie i
1.5 MONITOR—SUPERVISORY CONTROL

1.6 DIFFERENCES BETWEEN SOS SHARE AND SOS MERCURY . ..

Section 2. MODIFIED SOS SYSTEM
2.1 COMPILER. ittt it ettt e e et ennn
2.1.1 SHARE Symbolic Language (SCAT)
2.1.2 SymbolicInput Format
2.1.3 Symbolic Language and Arithmetic Expressions
2.1.4 Evaluation of Variable Field Expressions .,
2.1.5 Special Charactersc00uvuiuoun..
2.1.6 Classifications of Operation Codes

2.1, 7 Machine Instructions v ieene...

1-1

1-3

1-3

1-4

1-5
1-5

1-5

2-2

2-3

2-3

MC 102

TABLE OF CONTENTS (Cont’d)

Page
2.1.8 Pseudo-Instructions. 2-4
2.1.9 Macro-Instructions 2-15
2.1.10 List Control Pseudo-Instructions 2-20
2.1.11 SCAT 709/7090 Machine Instructions. 2-21

2.2 PROGRAM LISTINGSot ittt ittt ittt i ieaeees s 2-22
2.2.1 Reference Systems 2-23
2.2.2 Sample Listing i 2-24

2.3 MODIFY AND LOAD. i i i ittt et et oo et ee e e 2-25
2.3.1 Pseudo-Operationscc e 2-26

2.4 DEBUGGING MACROSt ittt it vteees e 2-37
2.4.1 Variable Fields. 2-37
2.4.2 Information MacrosS v o v v v v o vt v vt v o oo oo v v 2-38
2.4.3 Modal MacCIrOS. . . v v v v v v v v o e a oo e s oo o oo s o oo ns 2-39
2.4.4 Conditional Macros v it ittt v oo s oo 2-40
2.4.5 Programming Examples of Debugging Macros 2-42

2.5 MONITOR . . v vttt v e et n oo oot oanonsesas e eeses 2-44
2.5.1 System Operation: Input Deck 2-45
2.5.2 Effectof Control Card0ccceno.n 2-48
2.5.3 Specifications of the Data Sentence Program 2-50

Section 3. OTHER PROGRAMMING STANDARDS
3.1 MERCURY PROGRAM WRITEUP SPECIFICATIONS. 3-1
3.2 FLOW CHARTING STANDARDSttt 3-3

ii

MC 102

TABLE OF CONTENTS (Cont’d)

Page

3.3 PROGRAMCHECKS ittt ittt tieeneeenns 3-5
3.4 SYMBOLS ittt t ittt entesannnenas 3-6

Section 4. MATHEMATICAL STANDARDS

4.1 TERMINOLOGY it ittt it ittt ettt et oe oo o 4-1
4.2 COORDINATE SYSTEMS AND CONVERSIONS 4-7
4.2.1 National Bureau of Standards Conversion Factors 4-19
4.2.2 Real Time Impact Prediction Coordinate Transformations 4-19

4.3 CONSTANT S ittt ettt ettt e ieeeteaenenn 4-27
4.3.1 Constants (Alphabetical Order) 4-27
4.3.2 Constants (Numerical Order). 4-31
4.3.3 Octal Constants. 4-34

4.4 TABLES. ittt it ittt ittt titennoenneeenns 4-35
4.5 COMMUNICATION CELLS. i ittt ittt e e 4-47

iii

Figure
4-1
4-2
4-3.

4 -4,

4 -8,
4 -9,
4 - 10,

4 - 11,

Table

1-1,

LIST OF ILLUSTRATIONS

Radar Coordinate System
Observational Framework, Inertial Coordinate System . . .

Latitude Relationships
Longitude Relationships

Relationships Between Earth, Orbit and Capsule

Projection of Orbit on Celestial Sphere (unit vectors and

anglesdisplayed)00 ...,

Projection of Orbit on Celestial Sphere (longitudes and

anamolies displayed)
Xi, EtaCoordinates
Local Azusa (Mark I) Coordinate System
Local Radar Coordinate System

Inertial Coordinate System

LIST OF TABLES

Individual Files on the Mercury SOS Tape

Routines on the Project Mercury Library Tapes

MC 102

... 4-13
... 4-14

... 4-15

... 4-16

e 4-17
... 4-18
... 4-20
... 4-20

.. 4-22

MC 102

Section 1

INTRODUCTION

A standard can be defined as a model or a set of criteria established by
authority and/or general consent. The imposition of, or agreement upon,
standards implies uniformity of results. The size and complexity of the Project
Mercury Program System necessitated an immediate provision of standards.

Standards do not operate in a vacuum; they are applied, in the present in-
stance, to a system—the Mercury Program System. The program system
evolved from organized knowledge in existence at the beginning of the project—
of primary interest was the SHARE Operating System (SOS). These modifications
to SOS are discussed in detail in this volume, for they are basic to an under-
standing of the application of standards.

Standards were criteria for the entire programming effort. The use of
such standards made it possible for programmers to develop their work in-
dependently of others and yet maintain a unified system. This system was the
primary consideration in the delineation of programming guides.

The nature of the system required the utilization of two types of standards,
programming standards and mathematical standards. The former provided
guidelines for program writeups, flow charts and symbology; the latter aided in
the organization of the presentation of terminology, coordinate systems and
conversions, constants, tables and communication cells. These sections andtheir
results (as displayed in the programming volumes) further illustrate the concept
that standards are guides, not inflexible rules. These guideshave been followed,
generally, but there have been some deviations in detail.

1.1 SHARE OPERATING SYSTEM (SOS)

SHARE is a distribution agency, an organization formed by users of the
IBM 709/7090 Data Processing Systems for the exchange of programming
information and the mutual development of programming standards. The SHARE
Operating System (SOS) is the primary programming system used with the
IBM 709/7090 computers.

SOS was one of the existing programming systems surveyed by a Standards
Committee for Project Mercury. The unique and stringent requirements for
such a system, established by the original Mercury specification, called for the
use of real time operation, internal and external interrupts, and special displays.
The committee found that some programs would be almost impossible to code
unless treated in a machine or pseudo-machine language. Therefore, a slightly

1-1

MC 102

modified version of the SHARE Operating System was chosen as the basis for
programming the Mercury project. (Differencesbetweenthe SHARE and Mercury
systems are discussed in Subsection 1.6 of this volume.)

To code each part of the project simultaneously, certain restrictions had
to be placed on each programmer so the joint programming efforts could be
compiled without difficulty. This necessitated the establishment of special
features to guide the programmer in writing programs:

a) A special notation for each section of the Mercury program.

b) A special notation for communication between programmers.

c) A special coding for machine hardware operation.

d) The use of six-character symbols, communication cells and constants.

Certain constants such as the rotational speed of the earth had to be estab-
lished; these values were determined by NASA and confirmed by Dr. Herget of
the Cincinnati Observatory.

Mathematicians had to be consistent in their usage of Greek letters to
designate the various units of space and time. These were agreed upon and are
listed in the subsections titled ‘‘Symbols’’ and ‘‘Terminology’’ (Subsections 4.1
and 4.2 of this volume). There was a need for consistency in defining the
coordinate systems to be used throughout all programs and in defining the
conversion of local coordinate systems to spherical, and vice versa. Further-
more, because certain routines would be used to a great extent in Mercury
system coding, a utility tape was developed to ensure consistency and ease of
coding.

The use of SOS offers the following advantages:

a) Relative ease in alteration of programs during the coding and
testing stages.

b) Control over the allocation of storage.

c) Execution of various programs which are in different stages of develop-
ment.

d) Control over individual data (real time inputs), an absolute necessity.
e) Incorporation of common library subroutines.

SOS also provides the advantages of symbolic assembly and eliminates
the disadvantages of other assembly systems. Changes in symbolic form can
be made in little more timethanittakes to load binary punched cards. Debugging
information can be listed in symbolic form rather than in actual language, as
was previously required.

1-2

MC 102

Other provisions of SOS include:

a) The use of mnemonic operation codes (including a large group of
pseudo-operations).

b) Arbitrarily chosen location symbols.
c) Relative and complex addressing.

d) The definition of special-purpose macro-instructions for use in a
given program,

Although SOS is actually an integrated system, it has, for convenience and
easy reference, been divided into the following subsystems:

a) The SHARE Compiler-Assembler-Translator (SCAT), subdivided into:
1) Compiler
2) Lister
3) Modify and Load

b) The Debugging system (program testing and correction), which in-
cludes the SNAP and SNAPTRAN programs.

¢) The Input/Output system.

d) Monitor

1.2 SHARE COMPILER-ASSEMBLER-TRANSLATOR (SCAT)

This subsystem consists of three different parts: Compiler, Lister, and
Modify and Load. These three partstogether perform allthe functions associated
with symbolic assembly. In addition, SCAT produces symbolic listings, per-
forms all the mechanics of incorporating modifications into a program, and
loads programs for execution.

1.2.1 Compiler

The Compiler assembles the first part of a symbolic source program. This
function consists of reading symbolic cards and translating the information
contained in them into, and producing, a compact binary-coded-symbolic (squoze)
form of the program. The squoze form of the program contains all the informa-
tion, including remarks cards and comments from instruction cards, supplied
in the source program,

1-3

MC 102

The squoze deck produced by the Compiler may be used in either of two
ways:

a) It may be used with a symbolic deck and other squoze decks as input
to subsequent Compiler passes, and incorporated with the symbolic
deck to form one output squoze program., This feature makes it
it possible to write a program in parts and to debug each part before
combining them.,

b) It may be used as input to Modify and Load, which completes assembly
and loads the program for execution.

Another powerful tool of the Compiler is the macro-operation concept.
The Compiler is built to recognize a large, fixed number of macro-operations.
It also accepts and temporarily retains definitions of macro-operations given
by the programmer. In either case, it generates and inserts into the program
the sequence of machine words specified by any one of these macro-operations
in a macro-instruction.

1.2.2 Lister

The SCAT Lister is actually a part of the Modify and Load program. How-
ever, since the Lister is used by the Compiler as well as by Modify and Load,
and because knowledge of certain features of the listing produced by SCAT are
required for an understanding of Modify and Load, the Lister is considered
separately here.

The Lister provides the counterpart of program assembly listing. The
listings produced include all the symbolic information, remarks and comments
from the original source program deck as modified by subsequent changes. A
machine language program is also generated by the Lister.

1.2.3 Modify and Load

Modify and Load completes the assembly of the input, incorporates symbolic
modifications (if included with the input) and loads the program into storage
for execution. Input to Modify and Load consists of a squoze program and,
when necessary, symbolic cards which indicate changestobe made in the program,

Modify and Load also offers the following features:

a) A new squoze program incorporating symbolic changes can be pre-
pared when desired (a new listing of the program is also prepared).

b) An absolute binary deck can be punched from a squoze program.
c) A new listing of a program in squoze form can be prepared when

required,

1-4

MC 102

1.3 THE DEBUGGING SYSTEM

The Debugging system consists of a group of closed subroutines and their
associated macro-instructions which may be written into a program at strategic
points or included as program changes through Modify and Load. These sub-~
routines supply the instructions necessary to print out symbolic information
which aids in debugging.

1.4 INPUT/OUTPUT SYSTEM

The Input/Output system consists of a set of macro-instructions which
generates in a program the instructions necessary for several types of input
and output. These macro-instructions are general-purpose types and are in-
tended to be interspersed with machine instructions, as necessary, to achieve
special-purpose input/output for a given job.

1.5 MONITOR—SUPERVISORY CONTROL

Monitor is the control function of the SOS system. There is more than one
Monitor system in SOS, but all perform essentially the same tasks, Input to the
Monitor program consists of one or more job decks. A job deck is a program
deck (symbolic, squoze, or any combination of the two) with control cards which
indicate the functions to be performed on the program, e.g., compile, list, load,
etc. This deck is processed by SOS and is controlled while in process by the
Monitor, as specified in the control cards in the job deck.

When a jobdeckisused as input, Monitor reads the control cards, determines
the segment of SOS required for processing the deck, and loads the required
part. Control is then transferred to the processor loaded by Monitor. That
program then processes input until the end of the job deck is reached, a new
control card is encountered or an error occurs. When the end of the deck is
reached or a new control card is encountered, the Monitor is reloaded into
storage and the process is repeated. If an error occurs, the Monitor prints a
message indicating the error and, if possible, continues processing the job.
If it is not possible for the Monitor to continue, it skips to the next job. (Monitor
is discussed in detail in Section 2 of MC 107.)

1.6 DIFFERENCES BETWEEN SOS SHARE AND SOS MERCURY

A brief discussion of the SHARE Operating System was presented in Sub-
section 1,1, It is appropriate perhaps to examine some of the differences
between SOS Mercury and the standard SOS (the term ‘‘standard’’ is almost
meaningless, since there are many options in SHARE and, in all probability,
few if any users have identical systems). An important point to mention here
is the need for modificationto a system (SOS) that seemed to fit the requirements
for the Mercury Program System.

1-5

MC 102

SOS is a dynamic programming system distributed by the SHARE agency to
users of the IBM 709/7090 Data Processing Systems. To meet the changing
needs of its members, SHARE constantly alters SOS; this particular factor is
unnecessary, however, to the maintenance of a reliably operating Mercury
Program System. For this reason, local changes were made,

The Mercury SOS System consists of:

a) Several copies of the Mercury SOS Tape, which incorporate modifica-
tions through SHARE Distribution No. 30, and the local changes dis-
cussed later. (See Table 1-1 for the listing of files on the Mercury
SOS Tape.)

b) Two SOS Library Tapes and their duplicates. To realize a consider-
able conservation of core storage during compilation of the Mercury
Program System, 13 of the 18 routines were recorded to provide com-
mon storage for the temporary results. The twotapes necessary are a
tape on which each routine contains its owntemporary storage (labeled
‘‘Regular SOS Library’’) and a tape on which the routines lack tempo-
rary storage (labeled ‘‘Mercury SOS Tape’’).

c) The New York SOS System Tape (M 641) and duplicates—labeled
““*SHARE SOS Tape.’”” This tape includes all sections of the system
exactly as they have been developed in New York.

d) The complete system is absolute (row) binary cards, used to write the
Mercury SOS Tape, and another absolute (row) binary deck, used to
write the SHARE SOS Tape. Each system contains approximately
3000 absolute binary cards.

e) Each complete system (Mercury and SHARE) in column-binary squoze
cards with appropriate modifications. Each system contains approx-
imately 10,000 squoze cards.

f) Five folders of listings for the sections of the SOS system: two folders
with no modifications, one with New York modifications, one with all
of the modifications, and one with the library routine listings.

The changes made to SHARE indeveloping the Mercury Program System are
discussed under headings of the parts of the system: Monitor, Compiler, Modify
and Load, Debug and Input/Output.

Monitor: The Mercury SOS Tape uses the New York 32K IBMonitor, with
local modifications. SHARE intends to depart from this and adopt the Mock~
Donald Monitor, but Mercury will retain the modified New York Monitor.

The local changes are:

a) The Mercury Monitor initializes core storage above location 3000, to

zeroes at the start of each job. SHAREinitializes by inserting on STR
instruction (operation code 1000g) in each location above 3000qy.

1-6

MC 102

TABLE 1-1. INDIVIDUAL FILES ON THE MERCURY SOS TAPE

File File Sequence Number. of
No. Name Name Section Records
1 Tape Loader 2
2 MN MON Monitor 13
3 M1 MLSUPR Medify and Load 18
4 MO MLMODI1 35
5 M3 MLLMOD2 21
6 M7 MLPCHI 1
7 M7 MLPCH2 1
8 M7 MLPCH3 5
9 M7 MLPCH4 6
10 M7 MLPCHS5 6
1 M4 MLASGN 8
12 M5 MLDCOD 13
13 M6 MLDERP 10
14 M8 MLLIST 43
15 M9 MLEROR
16 D1 SNP1 Debug
17 D3 DDE 9
18 D2 SNP2 20
19 1 SCAT1 Compiler 47
20 Cc2 SCAT2 14
21 DA DS1 Input/Output 14

Files on the SHARE SOS Tape which have been omitted from the Mercury SOS Tape.

IN INTRAN Input/Output
oT OUTRAN
™ ™

1-7

MC 102

b)

c)

d)

f)

For floating point overflow and underflow, Mercury prints the location
of the instruction off-line, causing the overflow or underflow. Over-
flow sets bits 1 through 35 of the offending register (AC or MQ) to
““1’s” but the sign remains unchanged and the program continues,
When an overflow occurs, SHARE dumps. For both SHARE and Mercury,
underflow causes the offending register (AC or MQ) to be cleared,
i.e., set to plus zero, and the program continues,

A programmer may terminate his programbytransferringto SYSTEM
or SYSERR, without defining these symbols in his program, instead of
returning to the SOS Monitor with a TRA 10 or 14, 110 or 114,
System initializes for the next job; SYSERR gives an octal dump of
core, from 30007 up, and then initializes for the next job.

The table of names of the 18 routines on the Mercury Library Tape
and the number of those routines appear in the Mercury Monitor.
SHARE Monitor provides for these items but does not include them,
since they are a function of each installation. (See Table 1-2 for the
routines on Mercury Library Tapes.)

The calling sequences to initialize the Intran and Outran files were
removed to allow room for the floating point overflow/underflow
routine, because those files were omitted fromthe Mercury SOS Tape.

To permit the changes mentioned above to be made without changing
the correspondence of alter numbers and locations between the Mer-
cury and SHARE systems, some instructions have been moved and
some remarks have been inserted.

Compiler:

a)

b)

c)

1-8

A writeup was issued to allow for the possibility that it might be
desirable in the future to incorporate some of the Mercury program-
mer macros into SOS as system macros (CORE, for example).
(The Mercury SOS Tape does not include the Mercury programmer
macros,) Core storage was made available to accomplish the
insertions into the Compiler by removing certain instructions not
used in Mercury (the instructions referring to data channels E, F,
G and H, the magnetic drum and the cathode ray tube).

A new SCAT instruction, PSLF (present sense lines) was created to
permit the Mercury Monitor to activate the subchannels of the Data
Communications Channel.

When compiling squoze cards with symbolic cards, and when using
the control card SQZ or SZQRB, SHARE had previously incorrectly
computed the checksum of each cardtocompare with what was punched
on that card. This situation was corrected.

MC 102

TABLE 1-2. ROUTINES ON THE PROJECT MERCURY LIBRARY TAPES**

Name

(in order of appearance
on the Library Tapes)

Description

U1sICo

UIEXPE
UISQRT
UILOGE
UIATAB
UTATNA
UTASCO
UITACO
UTFXPT
UIFLPT
U3DoTP
U3XPRO
U3MATM
UAILSC
U7INTP

U3VMAG
U3VPRO
U3UNTV

*Sine - Cosine
*Exponential
*Square Root
Natural Logarithm
*Arc Tangent A/B
*Arc Tangent A
*Arc Sine - Arc Cosine
*Tangent - Cotangent
*Fix a Floating Point Number
*Float a Fixed Point Number
**‘Dot'’ Product
**“Cross'’ Product
Matrix Multiplication
Convert XYZ Coordinates to RAE
Six-Point Lagrangion Interpolation
*Generate Magnitude from Vector
Vector ““Triple Cross’’ Product

*Generate Unit Vector from Vector

*Recoded for Library Tapes to store temporary results in COMMON.

** These routines are discussed in Section 3 of Volume MC 107.

MC 102

1-10

Modify and Load:

a)

b)

c)

d)

e)

f)

g)

h)

1)

The PSLF instruction was added to the decode and lister files (see (b)
under ‘‘Compiler?’),

Deletions to allow room in storage for later additions of Mercury
programmer macros to SOS were made in the same manner as those
from the Compiler (see (a) under ‘‘Compiler’’).

The decode and lister files were also alteredto handle the compilation
of squoze cards using SQZ or SQZRB.

The Modify and Load supervisory controller and lister files were
altered to permit the use of the system symbols SYSTEM and SYSERR.

A logical error in the computation of the squoze card checksum
during Compile and Punch Squoze was corrected by a change to the
punch file,

A logical error causing difficulty when altering out an END card with
an alter number which was a multiple of 255 was corrected.

It is now possible to alter out LBR cards at Modify and Load time;
however, there is still no way to alter in a routine from the library
tape.

There is no longer any difficulty when a programmer’s macro defines
the symbolic location of the first instruction generated by the macro
as a parameter of the macro.

Another change to the modification file now permits the altering in or
out of the TQO instruction.

Debug: There are no deviations from the SHARE debug section,

Input/Output: The Intran, Outran and Transmission macros (dispatcher
files) have been omitted completely from the Mercury SOS Tape, leaving the data
sentence as the only I/O file retained. The only difference between the Mercury
and SHARE data sentence files is that the system symbol SYSTRA is equated
to 111 in Mercury and to 12in SHARE, The Intran program is physically present
on the tape, but only for use by the data sentence program.

MC 102

Section 2
MODIFIED SOS SYSTEM

2.1 COMPILER

The Compiler in the SHARE Operating System performs three functions:
translation, compilation and assembly. It processes the source program, written
in symbolic language, and produces a tightly encoded binary deck.

Input to the Compiler can take the form of symbolic records and library
routines; previously compiled programs can also be combined with subsequent
symbolic programs as input. The output is a squoze deck of the compiled source
program. The name ‘‘squoze’’ was adopted for the output deck and is meant to
convey compactness. A squoze deck contains the source program coded in a
compact form which retains the original symbolic information. It is this sym-
bolic output that is loaded, modified and translated into actual machine language
and executed by the Modify and Load section of the SOS system.

2.1.1 SHARE Symbolic Language (SCAT)

The mnemonic term SCAT is a contraction of SHARE Compiler, Assembler
and Translator and is widely used as the name for the symbolic language in the
SOS system. It is the logical extension of the SHARE symbolic language. The
extensions which have evolved were dictated by the following general require-
ments:

a) The capability to recognize all 709/7090 machine instructions and
709/7090 SHARE mnemonics,

b) A requirement that IBM 704 programs be compatible with SCAT. The
Compiler (CP) recognizes, with some modification, the 704 symbolic
language (SAP). When a SAP pseudo-instruction is different from its
SCAT equivalent, the Compiler converts itto alegitimate SCAT instruc-
tion. SCAT/SAP compatibility does not extend beyond the compiling
phase, however. Modify and Load accepts only legitimate SCAT codes,
treating all others as illegal.

¢) The incorporation of variable-length mnemonics, which provide a
facility for expressing channel designation in a consistent way and
provide a convenient means of specifying macro-instructions to be
processed by the Compiler.

d) For ease of key punching, it is desirable for the variable field to begin
in the same column of every card, regardless of the length of the
mnemonic.

MC 102

2.1.2 Symbolic Input Format

The format of the symbolic instruction, with fields fixed at their maximum
limits, is:

Card Columns Description
1-6 Location field or blank
7 Blank
8 ~14 Operation code (including asterisk for indirect addressing)
15 Blank
16 - 72 Variable field and comments, which must be separated by
a blank
73 ~ 80 Not used

In other words, the mnemonic operation code (beginning in card column 8) may
be from one to six letters in length. At least one blank must follow the last
letter; the number of blanks that may follow must be such that the length of
the operation code plus the number of blanks is less than or equal to eight. If
the variable field does not begin by column 16, it is assumed to be blank.

Four principal parts of a symbolic instruction are recognized: location
symbol, operation code, variable field and comment field. The location symbol
is a name for either a storage location or other expression associated with the
instruction; the precise item named is dependent upon the operation specified.
In all cases the operation determines the nature of the instruction and guides
the interpretation of the various parts. The variable field is construed in a
variety of ways as a function of the operation part of the instruction. In general,
with the location symbol and operation, the variable field gives complete instruc-~
tion specifications. The comment is not considered pertinent to the running of
the program. It has the sole function of describing a remark intended to appear
on a listing.

The order for the variable field of a 709/7090 symbolic instruction is
address, tag, decrement. These subfields within the variablefield are separated
by commas. In all instructions it is possible to omit parts of the variable field.
To omit only an interior part (the tag, for example) it is necessary to have two
commas in adjacent positions because the first blank encountered in a variable
field terminates that field. TXI A, 0, B and TXI A,,B result in the same word,
Comments may begin after a blank, indicating the end of the variable field;
however, for ease in key punching and to maintain uniformity, comments should
begin in column 35. Comments may not begin before column 17.

2.1.3 Symbolic Language and Arithmetic Expressions

The basic units of the symbolic language are symbols, numbers, and opera-
tion codes. These units may be combined by punctuation marks, subject to certain
rules, to yield expressions.

2-2

MC 102

A symbol is a combination of from one to six Hollerith characters, at least
one of which is non-numeric andnone of which is either a +, -, *, ?, $, =, comma
or an imbedded blank. A blank is not considered a character in this case. A
symbol is defined if and only if it appears in the location field of some instruc-
tion; otherwise, it is undefined. It is desirable to label a symbolic instruction
with a location symbol only if it is necessary to refer to that instruction in the
program. An absolute location symbol, i.e., one containing only numeric charac-
ters, is flagged as an error and is ignored. Leading zeroes are considered
legitimate characters of a symbol.

A number is a combination of digits which may be decimal or octal, depend-
ing upon the operation code of the instruction in which it appears. An operation
code may consist of from three to six alphabetic characters. An expression is
a combination of symbols and integers separated by the following connectors or
punctuation marks:

+ addition

-~ subtraction

* multiplication
/ division

(NOTE: These connectors have different meanings when used in the BOOL
pseudo-~-operation. This operation is defined later.)

2.1.4 Evaluation of Variable Field Expressions

Constants in a variable field must be less than 235, They are considered
decimal quantities unless the instruction is a Type D instruction. (NOTE: Ex-
amples of Type D instructions are: RIL 1, RIR 44, SIL 1 and LFT 2.) The
constants of a Type D instruction are treated as octal values. Only simple
expressions are permissible in the variable field of these Type D instructions,
and the value is computed modulo 218, With all other instruction types, if
the symbol referred to in a simple expression is octal (Boolean), the address
and decrement fields are treated as 18-bit values and the tag is computed
modulo 8. When not octal, the address and decrement fields are considered
as 15-bit values and the tag is computed modulo 8.

2.1.5 Special Characters

The asterisk character, *, has five different meanings in SCAT, depending
upon its context. As a punch in column 1 of a card it defines the card as a re-
mark or comment card. If it is found immediately after an operation code, it
specifies indirect addressing. As a connector in a variable field expression it
connotes multiplication. As a Boolean operator it specifies intersection, e.g., the
logical AND process. Finally, if it occurs immediately after another connector

2-3

MC 102

or as the first character in a variable field, it must be recognized as a term.
In this context an asterisk is interpreted as having the current value of the
location counter.

The character, $, may be preceded by a numerical, alphabetic or special
character, or it may commence a term followed by five or fewer characters
in an expression, These collocations cause SCAT to head the symbol with the
given character rather than the current heading character. Reference from a
headed region to an unheaded symbol is now made only by preceding the $ with
no heading character. Previously such referencing was also possible by pre-
ceding a $ with zero.

2.1.6 Classification of Operation Codes

There are actually only two classifications of instructions: machine instruc-
tions and non-machine instructions. The latter type are collectively called
pseudo-instructions. For purposes of this discussion, however, the pseudo-
instructions are arbitrarily divided into three categories, one of which retains
the generic name pseudo-instruction. In view of this arbitrary distinction, the
Compiler, therefore, recognizes four classes of instructions:

a) Machine instructions
b) Pseudo-instructions
c¢) Macro-instructions

d) List control pseudo-instructions

2.1.7 Machine Instructions

A machine instruction (i.e., an instruction using a machine operation)
always generates one 36-bit binary machine word in the object program. The
rules for specifying the location field and the variable field of a machine instruc-
tion have been stated previously. The vocabulary of 709/7090 instructions and
their SCAT mnemonics appear in Subsection2.1.11. {For information concerning
the operation of these instructions, refer to the 709/7090 Reference Manual.)

2.1.8 Pseudo-Instructions

Unlike machine instructions some pseudo-instructions may generate more
than one machine word in the object program; others generate no words at all.
The pseudo-operations of SOS have a variety of functions.

The rest of this section describes the pseudo-operations of the Compiler
section of SOS (except for those which direct the Modify and Load program).

The mnemonics L and VF refer in the following paragraphs to location
counter and variable field, respectively.

2-4

MC 102

2.1.8.1 Assignment of Absolute Storage Locations—Origin (ORG)

The basic function of an assembly process is to assign absolute storage
locations to machine instructions. There must be an address at which this assign-
ment begins, however. In SCAT this value is furnishedto the assembly program
by the program being assembled via the ORG pseudo-instruction. ORG sets the
location counter to the same integer value as that computed for its variable
field. A location symbol associated with an ORG instruction is also assigned
the computed value of the variable field.

Address,
Tag,

Location Operation Decrement
ORG 10079

In the example above, ORG assigns a value of 1003 to the location counter.
The location counter determines the storage location to which the subsequent
instructions are assigned. The first instruction following the ORG card is as-
signed the location of the variable field value, modulo 215, of the ORG card.

A symbol appearing in the variable field expression need not have been
previously defined, i.e., need not have appeared inthe location field (columns 1~6
of some previous instruction or pseudo-instruction). However, a symbol in the
expression which is not eventually defined in the program renders the variable
field of ORG non-computable.

If the program being assembled does not have an ORG pseudo-instruction,
Modify and Load sets the ORG to the lowest location in memory not required by
the SCAT system (30001(). Subroutines assembled without ORG can be inserted
into a job where needed, as long as they are prefaced by a SQZ control card.

2.1.8.2 Block Started by Symbol (BSS)

A BSS can occur anywhere in a program. This pseudo-instruction is used
to reserve a block of storage whenever the program being assembled demands
it. The block reserved is equal in length to the value of the variable field ex-
pression and extends from L to L +(VF -1). The associated location symbol is
given the value that Lhaswhen it encounters the BSS and corresponds, therefore,
to the first word of the block reserved.

Address,
Location Tag,
Counter Location Operation Decrement
250 A BSS 200
450 B XXX XXX

2-5

MC 102

In the example above, the BSSinstructionreservesthe 200 memory positions
from locations 250 to 449, inclusive. The location symbol A is assigned to the
value 250.

The rules for previous definition of symbols are the same as for the ORG
pseudo-instruction.

2.1.8.3 Block Ended by Symbol (BES)

A BES may occur anywhere in a program. This pseudo-instruction is also
used to reserve a block of storage at the direction of the program being as-
sembled. In fact, a BES is the same as a BSS in every respect except for its
result upon the associated location symbol. This symbol is given the value L+
VF and corresponds to the first word following the block reserved. Thus,
whereas the associated location symbol in a BSS has the value of L, it is as-
signed the value of L. + VF in a BES instruction.

The rules for previous definition of symbols are the same as for the ORG
pseudo-instruction.

The variable field of a BSS or BES may specify, as a tag, a code indicating
the format of the data to be stored ultimately in the reserved block of storage.
This specification is not required, but enables debugging programs to make a
meaningful listing of such data. The codes are:

F-- Floating point numbers

X~-- Fixed point numbers

O-- Octal data

H-- Hollerith (binary coded decimal data)
S-- Symbolic instruction

C-- 1I/O command

V-- Variable Field Definition (VFD)

For example, if the programmer writes:

Location Operation Variable Field

Alpha BSS 50, F
then he is, by using F, effectively saying to the Debugging system “the 50 cells

in the block beginning at Alpha are to be interpreted as containing floating point
numbers whenever I ask you later to give me the contents of any of these cells.”

2-6

MC 102

2.1.8.4 Transfer Card (TCD)

The purpose of this pseudo-instruction is to produce control information
directing the loading program to execute a transfer of control from the loading
program itself into the programbeing loaded. The transfer is made to the storage
location represented by the value of the variable field expression of the TCD
instruction.

There can be more than one TCD instruction and they can appear anywhere
in the program.

If a TCD has an associated location symbol, the symbol is assigned the
value that L has when it encounters the TCD instruction,

Address,
Location Tag,
Counter Location Operation Decrement
200 A TCD 2500

The instruction above sets A equal to 200; transfer of control is made to
location 2500.

2.1.8.5 End (END)

Since, as explained in conjunction with the ORG pseudo-instruction, the com-~
puter must know where to start assigning absolute storage locations to machine
instructions, it must also know when to stopthis process. In SCAT, the termina-
tion of the assembly and loading operations is indicated by the END pseudo-
instruction. It must appear in every program and must be the last instruction
read during the assembly process.

As is the case with a TCD, the END instruction causes a transfer of control
to be made to the storage location represented by the value of the variable field
expression. The rules governing the associated location symbol, if any, are the
same as TCD.

Address,
Location Tag,
Counter Location Operation Decrement
800 A END 1000

The instruction above sets A equal to 800; transfer of control is made to
location 1000,

2.1.8.6 Equal (EQU)

The symbol appearing in columns 1-6 is assigned the integer value given by
the expression appearing in the variable field.

2-17

MC 102

The pseudo-operation EQU is used in those cases when the symbol appear-
ing in columns 1-6 specifies a preset program parameter such as the number of
items in a group, or any other quantity which is invariant with respect to the
location of the program in storage. Note that if the symbol in columns 1-6 speci-
fies the location of a piece of data or an instruction, the pseudo-instruction SYN
should be used.

2.1.8.7 Synonym (SYN)

The symbol appearing in columns 1-6 is assigned the integer value given by
the expression appearing in the variable field.

The pseudo-operation SYN is used in those cases when the symbol appear-
ing in columns 1-6 specifies the location of a piece of data or other quantities
whose values depend upon the location of the program in storage.

In SCAT language EQU and SYN may be used interchangeably, because in
loading the subsequent squoze deck by Modify and Load, the distinction is taken
care of automatically., However, EQU and SYN have different effects if the binary
object program is to be produced in a relocatable binary form. For the sake of
clarity and use for later compilations, programmers should still make the dis-
tinction, using both the EQU and SYN pseudo-instructions.

2.1.8.8 Boolean (BOOL)

The BOOL pseudo-instruction is similar to EQU and SYN, for it defines a
location symbol by equating it to the value of the single expression appearing in
the variable field. All numbers inthe variable field must be octal. The appearance
of an 8 or 9inthe variable field indicates an error, and the computed value of the
field is erroneous.

Computing the value of a Boolean variable field differs from computing the
value of an ordinary expression because the Boolean punctuation marks specify
logical rather than arithmetic operations, andthe resultis expressed modulo 218,

The punctuation marks, or operators, which may be used in this pseudo-
instruction are:

OPERATOR MEANING
Algebra of Classes 709/7090
+ Union Inclusive OR
- Symmetric difference Exclusive OR
* Intersection AND
/ Complementation Complementation

MC 102

For example: SYMBL BOOL 505*317 results in an octal
number of 105.

As with the EQU and SYN pseudo-instructions, the BOOL instruction must
have a location symhol associated with it. The variable field of this instruction
must be a single expression. Any division of the field into address, tag, decre-
ment causes the tag and decrement parts to be ignored and results in an indica-
tion of possible error.

If the programmer is using the sense indicator register in his source pro-
gram, he may often need to write Type D instructions, the 18-bit address part
of which corresponds to the 18 leftmost or rightmost bits of this special register
(see p. 60 and p. 51 of the 709 Reference Manual, A22 - 6501 - 1), If he cannot
conveniently predetermine what particular sense indicator positions he would like
to use, he might write, for example:

Location Operation Variable Field

RIR SENSX

Later, when he has decided that SENSX should be, say, the rightmost four
positions (i.e., positions 32, 33, 34 and 35 of the sense indicator register) he
can write:

Location Operation Variable Field

SENSX BOOL 17

The 17 is interpreted as an octal number equivalent to (000 000 000 000 001 111)2.

2.1.8.9 Heading (HEAD)

The HEAD pseudo-instruction provides a means of renaming symbols of
fewer than six characters by inserting an additional character at the beginning
of each symbol.

The variable field of a HEAD instruction must consist of only one character
or a blank. Any other configuration results in an error indication and is ignored
by the loading and assembly process.

The HEAD pseudo-instruction prefixes the heading character or blank to
every location symbol and every variable field symbol of five or fewer characters
encountered subsequent to itself and prior to the occurrence of another such
instruction.

2-9

MC 102

Location symbols and variable field symbols of six characters are not af-
fected by the HEAD pseudo-instruction. This is significant, for it is through the
use of six-character symbols and of the punctuation mark, $, that reference from

one headed field to another is possible.

A dollar sign appearing in a variable field is significant for the following

reasons:

a) An expression consisting of a single character, followed by a $ and

b)

followed by a symbol of fewer than six characters is equivalent to the
symbol headed by the initial character. For example, X$A is equivalent
to A headed by X. Such an expression is not affected by any HEAD
pseudo-instruction.

An expression consisting of a $ followed by a symbol of fewer than six
characters is equivalent to the symbol headed by a blank. Such an ex-
pression is not affected by any HEAD pseudo-instruction.

The following code illustrates the considerations mentioned above:

Absolute Location

Symbolic Location

0
1

7
8
9

10
11

o> W

>

COMMON

Additional information:

Code

CLAB
CLA A3A
HEAD A
CLAB
CLA $A
CLA B$A
HEAD B
CLA A$B
CLA $X
HEAD
CLAA
CLA B$A

CLA COMMON

HEAD C

CLA COMMON

BSS, 1, F

Absolute Address

~3 W N o w [l

o

11
11

a) f no heading character is given, the Compiler heads with a blank.

Heading can be discontinued by using HEAD with a blank variable field.

b) Zero is a distinct heading character and indicates a heading.

c) Reference to a headed symbol of five characters cannot be made by

2-10

compounding a six-character symbol of the symbol and the heading

MC 102

character. Thus, a reference in a variable field of ABCDE headed by
X must be of the form X$ABCDE and not XABCDE.

2.1.8.10 Decimal (DEC)

This pseudo-instruction is used toprovide decimal data to the program being
assembled. A single DEC instruction may specify more than one decimal number
per card. Successive words are specified in the variable field and are separated
by commas. The first blank encountered in the variable field terminates it. The
data words generated by this instruction are assigned successively increasing
storage locations; the location symbol, if present, is assigned the value of the
storage location of the first word.

The sign of a number is indicated by a plus or a minus sign preceding the
number, exponent, or binary scale factor. The absence of any punctuation
implies a plus sign.

The variable field expression of a DEC instruction must be a numerical ex-
pression. The only characters admissible in such fields are commas, numerical
constants, plus (+), minus (-), period (.), E and B.

Data generated by this pseudo-instruction is converted to one of three
specified forms (binary integer, floating point binary number and fixed point
binary number) according to the following rules;

a) Binary integer (with the binary point at the right end of the word) if
none of the characters, period (.), B, or E, appear in the numerical
expression.

b) Floating point binary number, if the characters, period (.) or E, or
both, but not B, appear in the numerical expression. The appearance
of E may be explicit or implicit.

1) The decimal exponent to be used in the conversion is the number
which immediately follows E. If E is not present, it may be implied
by a signed number.

2) The exponent is assumed to be zero if neither E nor a signed
number appears.

3) If the decimal point does not appear, it is assumed to be at the
right end of the word.

The expressions +12.345, 12.345, 1.2345E1, 1.2345 +1, 1.2345E +1,
1234.5E-2, 1234.5-2 and 12345E-3 are all equivalent representations
of the same floating point number, which is normalized following con-
version.

2-11

MC 102

c) Fixed point binary number, if the character B appears in the numerical
expression:

1) The binary scale factor used in the conversion is the number im-
mediately following B and may be positive, negative, or zero. (This
factor is the count of binary positions between the left end and the
binary point of the fixed point binary result.)

2) K the decimal point does not appear, itis assumed to be at the right
end of the word.

3) The decimal exponent used in the conversion is the number im-
mediately following E or, in the absence of E, implied by a signed
number. If both B and E appear, the order of their appearance is
irrelevant. For example, 1.2E1B4, 1.2B4E1l, 1.2+1B4 and 1.2B4+1
are equivalent expressions.

Any word generated by a DEC pseudo-instruction which exceeds the limit of
a machine cell results in a zero and an error is indicated.

In a DEC pseudo-instruction, a blank variable field, successive commas in
the variable field, and avariable field ending in a comma all imply the generation
of a zero.

2.1.8.11 Octal (OCT)

This pseudo-instruction is used to provide octal data to the program being
assembled. A single OCT instruction may specify more than one octal number
per card. Successive words are specified in the variable field and are separated
by commas. The first blank encountered in the variable field terminates it. Data
words generated by this instruction are assigned successively increasing storage
locations and the location symbol, if present, is assigned the value of the storage
location of the first word. (Note the similarity with the DEC pseudo-instruction,
except for the kind of data generated.)

Octal numbers may be preceded by plus or minus signs; the absence of any
sign implies a plus sign.

Octal numbers appearing in the variable field of OCT may consist of from
one to twelve octal digits. The octal number may be signed if it is no greater in
magnitude than 377777777777. I twelve digits appear, the following equivalences
exist with respect to the sign and high-order digit: -0 =4, -1 =5, -2 = 6 and
-3 = 7. If a sign appears with an octal number greater in magnitude than
377777777777, if more than twelve digits are written, or if any characters other
than digits 0-7 appear in the variable field of this instruction, the conversion
results in zero and an error is indicated.

2-12

MC 102

In an OCT pseudo-instruction, blank variable field, successive commas in
the variable field, and a variable field ending in a comma all imply the genera~
tion of a zero.

2.1.8.12 Binary Coded Information (BCI)

This pseudo-instruction is used to provide Hollerith data in standard binary
coded decimal form to the program being assembled. The variable field of this
instruction consists of one digit from 1-9, followed by a comma, followed by any
characters (including the blank) which are acceptableto SCAT. Specified charac-
ters following the comma are packed together six to a 709/7090 word, and these
words are assigned successively increasing storage locations. The number of
words generated is specified by the digit preceding the comma. If a comma does
not follow the first digit of the variable field, an error indication is given. Any
location symbol associated with a BCI instruction is assigned the value of the
storage location of the first word generated by the instruction. The use of another
BCI card is required for more than nine words.

2.1.8.13 Library (LBR)

The LBR pseudo-instruction is used to extract a subroutine from a library

tape and incorporate it into the program being assembled. The complete format
is:

Address,
Tag,
Location Operation Decrement
SUBR LBR IDENT, U, CHANNEL

AND TAPE NUMBER

If present, the location symbol is assigned to the first instruction in the
library program, provided that the first instruction is not EQU, SYN or BOOL.
If the first instruction already has a location symbol, it is equated to the loca-
tion symbol of the LBR instruction.

IDENT and the Channel and Tape Number are only used to locate a sub-
routine in the tape library. The IDENT may be a symbol or an integer. I it is
a zero or blank the location symbol is used as the identification. If the Channel
and Tape Number is zero or blank it is assumed that the subroutine is on the
SCAT library tape, and the location symbol is used as the label in this case.

The symbol U (unrelativized) indicates to SCAT that the library subroutine
is not to be relativized. If the tag field contains any other symbol or is blank the
program is to be relativized. Relativizationisthe process by which all addresses
in the library subroutine are expressed relative tothe first symbol in the library
program, which is in effect a base point address.

2-13

MC 102
The SAP pseudo-instruction LIB is changed by SCAT into an LBR and ex-
ecuted accordingly. However, the following conditions are assumed:
a) The subroutine is on the system tape.
b) The subroutine is relativized.
c) The location symbol of LIB serves as the identification of the sub-
‘routine being called for by LBR. All addresses within a subroutine

are expressed relative to a base point address.

2.1.8.14 Variable Field Definition (VFD)

This pseudo-instruction is used to specify the division of words in other
than standard prefix, decrement, tag and address fields. The variable field con-
sists of defining expressions, or subfields, which may specify three types of
information: symbolic, octal, and/or Hollerith, These subfields within the variable
field are of the following form:

nl/El, Onz/Ez. Hn3/E3

In the example above, n is a decimal constant indicating the number of bits to be
occupied by the subfield; E is an ordinary variable field expression; H indicates
a Hollerith subfield; and O indicates an octal subfield. All subfields are termi-
nated by a comma or blank; these may not be included among the specified
characters. If the given expression is longer than the designated n bits, the
value of the subfield is taken modulo 2B, i.e., the rightmost n bits are used. If
it is shorter, the leftmost bits are filled in with blank characters in the case of
a Hollerith subfield and with zeros for all other types of subfields.

The first subfield specified begins at the leftmost part of the first word
generated. If a location symbol appears it is equated to the location of this word.
The next subfield begins to the right of the previously defined subfield. If a sub-
field extends beyond the end of a word, it is continued from the left end of the
next word,

There is no limit to the number of subfields which may be specified by this
pseudo-instruction; the length of any subfield cannot exceed 63 bits, however.

All subfields give the actual expression and not the location of the expres-
sion. All expressions are computed modulo the length of the subfield rather than
in the usual manner.

The expressions of a VFD variable field maybe either ordinary or Boolean,
or both, but they cannot both be in the same subfield.

Unless prefixed by O, the numbers in the variable field expression are to
the base 10 even when they occur with Boolean symbols.

2-14

MC 102

2.1.8.15 Et Cetera (ETC)

This pseduo-instruction is only used to extend the variable field of the pre-
vious instruction. The variable field of the previous instruction must be termi-
nated by a comma. If the comma has significance within the field, the break must
be made at an insignificant comma. Hthe previous variable field does not termi-
nate with a comma, a comma is assumed and an error is indicated. In any event,
the variable field of an ETC pseudo-instruction is considered an extension of the
variable field of the previous instruction, commencing at a comma and thus with
a complete expression.

An ETC pseudo-instruction may not have a location symbol associated with
it. It may, however, follow any instructions possessing a variable field. The
following points about ETC should be clearly understood:

a) f a comma has significance within a field which is being extended by
an ETC instruction, the break must occur at a comma which separates
fields, i.e., the comma signalling the ETC must not be introduced
within an expression,

b) The variable field of ETC does not being with a comma. In fact, it
does not differ from any other variable field. In the preliminary de-
scription of SCAT, it is stated that “the variable field of an ETC
pseudo-instruction is considered an extension of the variable field of
the previous instruction, commencing at a comma and thus with a
complete expression.” This is true but could be misleading. The
critical word is at--the expression commences at a comma, but not
with a comma.

c) An ETC may follow only a VFD pseudo-instruction, the MACRO pseudo-
instruction or any operation code callingfor the generation of a system
or programmer macro, and nothing else,

2.1.8.16 Remarks (*)

The pseudo-instruction asterisk, *, indicated in column 1 of a card, is used
to enter into the program being assembled commentary material which is to ap-
pear on a listing. The remaining 71 positions of the symbolic card may be used
as a comment field.

This pseudo-instruction has no location field (the asterisk is not recognized
as such), operation code field or variable field. It has no effect upon the assembly
process.

2.1.9 Macro-Instructions

A macro-instruction generates a word or a sequence of words. Parameters
required by the macro subroutine must appear in the variable field of the

2-15

MC 102

macro-instruction. These parameters are incorporatedintothe word or sequence
of words generated by the macro-instruction during the compilation of the object
program rather than at the execution time of the object program.

There are two types of macro-instructions in SCAT: system and program-
mer. The difference between system and programmer macro-instructionsis that
the former are provided for in the Compiler, and the latter are innovated in the
source program,

2.1.9.1 System Macro-Instructions

The generation of a system macro-instruction is called for whenever its
code name appears in the operation code field. The variable field specifies the
parameters to be used in the generated sequence of words. Any location symbol
associated with the macro-operation is assigned as the location symbol of the
first of the generated words.

At present there are two macro-instructions which have been incorporated
into the Compiler: BEGIN and RETURN. It is assumed that many such macro-
instructions will be available in the Compiler and that others will be added by
installations to handle special jobs.

BEGIN K, T, I, E: The BEGIN macro-instruction generates the basic sub-
routine linkage recommended by the SHARE Operating System Committee. The
parameters K, T, I and E are significant for the following:

K -- Location of the normal returnrelative tothe TSX. The exit trans-
fer is TRA K, 4.

T ~- Specification ofthe index registers tobe saved. It is recommended
as a debugging aid that index register 4 always be saved.

I --If Iis 1, the sense indicators are to be saved and restored; if
1=0, or blank, they are not to be saved and restored.

E -~ Specify whether to save and restore a cell to indicate what chan-
nel traps should be enabled.

The number of resulting instructions equals 2X +3I +2, where X is the number
of index registers specified by T and I is as defined above.

The maximum and minimum sequences are given below to the right of the
corresponding macro-instructions.

2-16

MC 102

Maximum Sequence:

SR BEGIN 2,71 SR TXL *+7
AXT 0,4
AXT 0,2
AXT 0,1
LDI *+2
TRA 2,4
PZE
STI *-1
SXA *-5,1
SXA *-7,2
SXA *-9,4

Minimum Sequence:

SR BEGIN 2, 4 SR TXL *+3
AXT 0,4
TRA 2,4
SXA *-2,4

A RETURN SR, n: This macro-instruction specifiesthe error code and gen-
erates the instructions necessary for the normal and error exits from the rou-
tine. If present, A is the location ofthe first generated instruction; SR identifies

. the subroutine. This identification is necessary since RETURN need not refer to
the most recent BEGIN macro-instruction. The error code n is stored in the
decrement of the first generated instruction of the associated BEGIN.

If no error return procedure is desired, n is zero or blank. In this case,
one instruction results.

TRA SR+1

If n is specified, the following sequence is generated:

AXT n, 4

SXD SR, 4

LXA SR+1, 4
TXI SR+2,4,1

The use of the system macro-instructions is illustrated below:

Source Program Object Program
SR BEGIN 2,71 SR TXL *+7
TPL SR2 AXT 0, 4
SR1 RETURN SR, 1 AXT 0, 2
SR2 DVP X AXT 0,1

‘ 2-17

MC 102

Source Program Object Program
STQ Y LDI *+2
SR3 RETURN SR TRA 2, 4
PZE
STI *-1
SXA *-5,1
SXA *-7, 2
SXA *-9, 4
TPL SR2
SR1 AXT 1,4
SXD SR, 4
LXA SR+1, 4
TXI SR+2, 4, 1
SR2 DVP X
STQ Y
SR3 TRA SR+1

2.1.9.2 Programmer Macro-Instructions

In addition to system macro-instructions, the Compiler processes macro-
instructions defined by the programmer for use in the program being compiled.
The definition is introduced to the Compiler by the MACRO pseudo-instruction,
which must have the code name of the programmer macro in its location symbol
field and the code MACRO in its operation field. The location symbol must be
from one to five characters in length, must be completely alphabetic and must
not be the code name of a machine operation, a pseudo-operation or a system
macro-operation. If the given code name is that of a previously defined pro-
grammer macro-instruction, the new definition replaces the former one.

The MACRO card lists in its variable field the parameters to appear in the
defining example. All of these parameters must be non-constant. The variable
field may be extended by ETC cards. However, the maximum number of para-
meters which can be specified by a MACRO pseudo-instruction and its associated
ETC cards is 32, They are separated by commas.

The instructions which constitute the defining example follow the MACRO
card in a sequence terminated by an END card. A defining instruction may have
in its variable field any valid combination of symbols and connectors. All loca-~
tion symbols are variable field symbols of the defining example and must have
appeared in the parameter list of the MACRO card.

Although the example used to illustrate the technique of writing macro-~
instructions shows all the variable field symbols as appearing in the parameter
list, it is not necessary that such symbols be included among the parameters.
It is true, however, that all location symbols must appear elsewhere in the
program,

2-18

MC 102

If symbols appear both in the parameter list and elsewhere in the program,
preference is given to their definitions in the parameter list in attempting to de-
fine a programmer macro-instruction.

The following illustrates a MACRO pseudo-instruction and its defining
example:

POLY MACRO COEFF, INVAR, DPVAR, DEG
ETC T, Z
AXT DEG, T
LDQ COEFF
DPVAR FMP A$INVAR
z COEFF+DEG+1, T
XCA
TIX DPVAR, T, 1
END

The location symbol of the MACRO pseudo-instruction becomes the operation
code of the defined programmer macro-instruction. The number of instructions
generated by a programmer macro-instruction is alwaysthe same as the number
in the defining example. For example, the symbol POLY defined above could be
used to form the macro-instruction:

POLY C1+10, X, FX, 3, 4, FAD

which would then generate the following sequences, or skeleton, in accordance
with the pattern of the defining example:

AXT 3, 4

LDQ Cl+ 10
FX FMP A$X

FAD Cl+ 14, 4

XCA

TIX FX, 4, 1

In the coding example, the first two instructions of the defining example are:

POLY MACRO COEFF, INVAR, DPVAR, DEG
ETC T, Z

The entire example is correct as shown. It is desirable, however, to be very
explicit about the following:

A parameter used in the defining example may not be
the mnemonic for any instruction.

As the example shows, it is permissible to have one of the parameters
represent an operation code in the manner in which Z stands for FAD. This

2-19

MC 102

means that an operation code may be included among the parameters of a defined
macro-instruction, as the included example illustrates:

POLY Cl +10, X, FX, 3, 4, FAD

The restriction mentioned here applies only to the parameter list of the defining
example.

A system macro can occur in the definition of a programmer macro; a
programmer macro cannot occur in the definition of a programmer macro.

Note that the parameters of the defined macro-instruction may be symbolic
or absolute, that they have a one-to-one correspondence with the dummy para-
meters of the MACRO pseudo-instruction, andthat they have replaced them in the
generated skeleton. Symbols which are to appear in the variable fields of the
generated instructions may appear elsewhere in the source program. However,
symbols to appear in the location fields of the generated instructions must not
appear elsewhere in the program. This would result in multiple definition of the
symbols,

2.1.9.3 Properties of Both System and Programmer Macro-Instructions

a) A location symbol is identified with the first instruction generated.

b) The variable field may consist of expressions and simple symbols.
Any expression which ultimately appears as a divisor of a fraction
in a variable field may have only one symbol,

c) The variable field may be extended by ETC cards.

2.1,10 List Control Pseudo-Instructions

The Compiler provides the following as a listing: symbolic program with
comments and alter and relative numbers (to be described in the Modify and
Load section); page heading, page number and date on each page; an optional
octal or decimal absolute program; error tables containing duplicated symbols,
undefined symbols, and the total number of error-flagged instructions; and an
optional symbol table which gives the symbol and page number. The list may be
used in finding symbols in the listing when no absolute program is printed.

The following list control pseudo-instructions are provided to edit the list-
ing of any program.

LIST: The LIST pseudo-instruction causes printing in the normal mode--
all cards are listed without printing in detail, i.e., without printing of words
generated by pseudo-instructions (OCT,VFD,DEC,LBR and BCI) or by macro-
instructions.

2-20

MC 102

UNLIST: An UNLIST instruction causes complete suspension of printing until
a LIST instruction is encountered,

DETAIL: If the instruction DETAIL (with a blank variable field) is en-
countered, any printing which is currently in progress continues with complete
detail, i.e., the machine words generated by macro-instructions (system and
programmer macros), LBR,DEC,OCT,BCI and VFD instructions, are printed.
The effect of a DETAIL instruction is nullified when and only when a TITLE,
LIST or UNLIST instruction is encountered.

TITLE: A TITLE instruction causes any printing which is currently in
progress to be continued in the normal mode (i.e., without any detail) until a
subsequent DETAIL instruction or, of course, UNLIST instructionis encountered.
If printing is already in progress in the normal mode, or if no printing is in
progress at all, a TITLE instruction has no effect.

2.1.11 SCAT 709/7090 Machine Instructions

Included in the list of instructions (although they are not actual machine
instructions) are those operation codes which may be used to assign arbitrary
values to the prefix and sign of calling sequence words. They are listed as a
group below:

Alphabetic Code Name Octal Code
MZE Minus zero -0000
MON Minus one -1000
MTW Minus two -2000
MTH Minus three -3000
PZE Plus zero +0000
PON Plus one +1000
PTW Plus two +2000
PTH Plus three +3000
FOR Four -0000
FVE Five -1000
SIX Six -2000
SVN Seven -3000

Instructions are listed below withinformation concerning address (A), tag (T),
decrement (D) and indirect addressing (I). Codes appearing under the various
headings have the following significance:

N-- This entry under the columns A,T,D and I indicates that the cor-
responding instruction should not have an address, tag, decrement
or indirect address, respectively. A zero in the address, tag or
decrement does not violate this restriction. If the prescribed
field is specified, it is processed as given and an error is noted.

2-21

MC 102

Y-- This entry under a column heading indicates that the specified
parts of the corresponding instruction should occur. If the field
is to be provided by the program, a zero should be used.

O-- This heading under column A indicates that the address field
must be an octal number or Boolean symbol,

1-- This entry under column T indicates that the tag field, if speci-
fied, must be a 1 or an expression with an equivalence of 1. No
other non-zero tag is permitted.

C-- There are six instructions (CAQ,CRQ,CVR,VDH,VDP,VLM)which
use the decrement field as a count. C appears under column D of
these instructions to indicate that the count is required.

2.2 PROGRAM LISTINGS

This subsection describes the form of program listings produced by the
SOS system., The material is included here in preparation for the discussion of
the Modify and Load pseudo-operation presented in Subsection 2.3, since refer-
ences to information in the program listings are necessary in that subsection.

The purpose of the SOS listing facilities is to provide means of obtaining
necessary information when making program modifications. Listings produced
by SOS are made in symbolic form, since this is the most useful method for
determining necessary changes.

Symbolic listings of a squoze deck reproduce, with some exceptions, the
symbolic source deck program, including modifications incorporated by the
punching of a new squoze deck. The exceptions which are never reproduced are:

a) Invalid operation codes, which are replaced in the listing by ///.

b) Invalid symbols, such as those longer than six characters, which are
replaced by //////.

c) The shortened forms of extended operation codes, which are changed
and listed in their extended forms, e.g., the instruction WRS 1169 is
listed as WTBB 1.

In addition, words generated by the BCI, DEC, LBR and OCT instructions
or by macro-instructions are not normally listed in detail. Instead, only a title
line and the first word generated by these instructions are printed. These may
be listed in detail, however, if the pseudo-op DETAIL is used as previously
defined.

2-22

MC 102

When a squoze deck is listed, the comments are aligned with the first com-
ment in the program and therefore may not be lined up exactly as in the source
deck listing,

Symbolic listings show the job title, page number and date in the upper right
hand corner of each page and are followed by 50 lines of printing. The listing
itself consists of several parts.

The symbolic instructions for the program are listed. In addition, octal
equivalents are normally given. These instructions are given numbers from two
reference systems (i.e., relative and alter numbers) which are assigned as de-
scribed below.

Appearing next, at the option of the user, is a listing of all defined symbols
used in the program. These symbols appear five on each line, in alphabetic
order. Multiply-defined symbols appear at the end of the table, with the numbers
of all the pages on which they appear.

2.2.1 Reference Systems

The two numbering systems previously mentioned (relative and alter number-
ing) are used to refer to words in a program. These numbers are assigned
initially by the Complier and are changed, if necessary, by Modify and Load
only when a new squoze deck is punched.

2.2.1.1 Relative Numbering

A relative number is an integer used to indicate the position of a machine
word, not assigned a location symbol, relative to the preceding word in the pro-
gram with which a location symbol is associated. The positions thus indicated
are the relative positions of instructionsthe lasttime a squoze deck was punched.

Since relative numbers in a sense indicate storage locations occupied by
machine words, they are assigned only to those instructions which, when loaded
for execution, occupy locations. Thus, relative numbers are never assigned to
principal pseudo-instructions (BES, BOOL, BSS, END, EQU, HEAD, ORG, SYN,
TCD), generative pseudo-instructions (BCI, DEC, DUP, LBR, OCT)or program-
mer macro-instruction definitions.

Relative numbering begins when the first location symbol of a program is
encountered. The word associated with this symbol is numbered 0 (although not
shown on listings) and the next word is numbered +1. Numbering continues until
either another word with a location symbol or an instruction with a principal
pseudo-operation is encountered. When a new symbol is encountered the process
is started again. If, however, relative numbering is suspended by one of the
pseudo-operations, it is not reinitiated until a new symbol is encountered. Words
for which a positive relative number cannot be computed are given a negative
relative number, i.e., a number relative to a succeeding symbol, if that can be
computed. If neither can be computed no relative number is shown.

2-23

MC 102

Although only one relative number is shown on the listing for a given word,
there exist, in general, many other equivalent relative numbers, both positive
and negative, any one of which may be used when referring to that word. For
example, in the following list, the word numbered +1, relative to the symbol
MASK, has the equivalent number +7, relative to RESTOR, or -1, relative to
WRITE, etc.

82 RESTOR AXT **0, 1 RESTORE

83 +1 AXT **0, 2 INDEX REGISTERS

84 +2 AXT **0, 4 CONTENTS

85 +3 AXT 2,4 RETURN

86 +4 SLN 1 TURN SENSE LIGHT 1 ON
87 +5 TRA PRINT

88 MASK OoCT 373737373737

89 +1 OCT 3777377377

90 WRITE PZE WKAREA,, 24

91 IMAGE BSS NUMBER, 0

92 NUMBER EQU 24

93 ZERO EQU 0

94 TSTBIT PZE STORAGE FOR TEST BIT
95 END PRCOMM

There is no number for a word relative to a symbol which is separated from
that word by a principal pseudo-operation. For example, in the listing the words
preceding the BSS with the location symbol IMAGE have no numbers relative to
the symbol TSTBIT.

2.2,1.2 Alter Numbering

Alter numbers are numbers for the symbolic cardsin a source program deck
and are assigned to all cards except:

a) Those which contain ETC and MACRO instructions.
b) Those which define programmer macro-instructions.
c¢) The Modify and Load pseudo-instructions.
Generative pseudo-instructions (such as BCI) and programmer macro-
instructions are assigned alter numbers. The words generated by the instructions

are not assigned numbers,

2,2.2 Sample Listing

The following sample presents the data found on an SOS symbolic listing:

a) Storage locations in octal

b) Octal equivalent of each instruction

2-24

MC 102

c) Alter numbers

d) Symbolic locations
e) Relative numbers
f) Operation codes

g) Variable field (containing the address, tag and decrement portions
and/or a comment section)**

a b c d e f g
TRI FUN HLS
00/00/00
Page 1
1* TRIG FUNCTION Problem
2% HOMER SNIDER
3* JOB VGPP, SIN, COS
4 ORG | 15000
352301 0 77400 1 00132 |5 | XA AXT |90, 1 Generate
352311 0 50000 0 35602} 6 | XAl CLA | ZERO FIXED
35232 0 40000 0 35736 | 7 + 1| ADD | ONEX Point
35233 | 0 60100 1 35736 | 8 | XA2 STO | FIXED-91,1 Numbers
35234 | 2 00001 1 35232} 9 | XA3 TIX ¥*-2,1,1 0to 90
35235 0 77400 1 00022 | 10 | XA4 AXT 18,1 Generate
35236 { 0 50000 0 35737 | 11 | XAS CLA | ONEF Floating
35237 |1 0 30000 0 35737 | 12 +1|FAD | ONEF Point
35240 | 0 60100 1 36010 | 13 | XA6 STO | Float-18,1 Numbers
35241 { 2 00001 1 35237 | 14 | XA7 TIX *-2,1,1 2to 19
352421 0 50000 0 35737 | 15 | XA8 CLA | ONEF Float one.
35243 | 0 60100 0 35740 | 16 +1|STO | E
35244 | 0 77400 2 01166 | 17 + 2| AXT | 630,2
35245 | 0 77400 1 00266 | 18 + 3| AXT |182,1
CORE | FIXED, X, 0, 0
35246] 0 62500 0 19 | CORE 1} STL | 2169

**The variable field section must start in column 16. The comment section must
be separated from the end of a preceding variable field by at least one blank.
In no case can it start to the left of column 17,

2.3 MODIFY AND LOAD
The input to the SOS Compiler is a symbolic source program from which is
produced a compact binary coded symbolic (squoze) program deck containing all

of the information supplied in the source program, including remarks cards and
comments from instruction cards. Squoze decks produced by the Compiler may

2-25

MC 102

be used with symbolic decks as input to subsequent Compiler passes to produce
one squoze output deck. Thus, a program can be written in parts and each part
debugged before all are combined.

Squoze decks produced by the Compiler are alsoused as input to Modify and
Load. Since all symbolic informationis available to Modify and l.oad, three major
advantages over previous assembly systems are provided:

a) Changes can be specified in symbolic form for incorporation into the
program by Modify and Load.

b) Symbolic changes do not require the source deck to be reprocessed
by the Compiler.

c) Symbolic information is available and may be retained for printing
during debugging runs, thus making debugging easier.

The main functions performed by Modify and Load are:

a) Modification of a squoze program on the basis of symbolic informa-
tion supplied with the squoze deck.

b) Loading the modified version of a program into storage in preparation
for execution of the program.

In addition to the above, Modify and Load also offers the following features:

a) When desirable, a new squoze deck incorporating symbolic modifica-
tions may be prepared. (A new squoze deck is automatically prepared
when a modification affects a heading card.) I is desirable generally
to exercise this option when the number of modification cards is ap-~
proximately equal to the number of cards in the squoze deck.

b) A symbolic listing of a program can be prepared from a squoze deck
which includes no modifications. (A new symbolic listing is automati-
cally prepared when a new squoze deck is punched.)

c) An absolute binary version of a program may be obtained from a
squoze deck. Although this option is available tothe user, little benefit
is derived by exercisingthe option until a program has been completely
debugged, because the debugging and modification features of SOS can
only be used with squoze program decks.

2.3.1 Pseudo~Operations

The SCAT language includes five pseudo-operations by which changes may be
made to a program at Modify and Loadtime. The use and effect of these pseudo-
operations are described below,

2-26

MC 102

To accomplish modifications, the modification instructions and any words
to be inserted into a program are punched in symbolic form and used as input
with the squoze deck. The changes indicated in these cards are made in the pro-
gram before it is loaded into storage but do not affect the squoze deck until a
new deck is punched. At that time, the changes are physically incorporated into
the new squoze deck.

The effects of the modification pseudo-operations when loading a program
into storage and when preparing a new squoze deck are equivalent to and could
be accomplished by making the required changes inthe original symbolic source
program, reprocessing with the Compiler and then loading the new squoze deck.
In the discussion that follows, only the effects which the pseudo-operations have
on the squoze deck are indicated.

Throughout the discussion each change is indicated as though it were the
only one affecting the program, regardless of the actual number. That is, all
changes must be indicated interms of the current deck and the associated listing.

2.3.1.1 CHANGE

The CHANGE pseudo-operation can be usedto delete words from a program,
to insert additional words into a program, or to do both, depending on the form of
the instruction. When CHANGE is used, modifications are specified in terms of
relative numbers.

CHANGE instructions may be used to delete or insert words with which lo-
cation symbols are associated, in which case the location symbol is also in-
serted or deleted. When a word which has a location symbol is deleted, the
symbol is deleted from the dictionary and may, therefore, be used subsequently
as a location symbol for another word. No location is required with CHANGE;
if one is present it is ignored.

Two forms of the CHANGE instruction are permissible, The first is:

-
{ Location Operation Address, Tag, Decrement/Count
|
1) 2 6| 7]s 14 | 15 | 16
|
} CHANGE A+n, B+m &

A+ n and B + m represent relative expressions, i.e., A and B are symbols and
m and n are integers which may be positive, negative or zero.

This form indicates that all words in location A+ n to B + m, inclusive, are
to be deleted from the program. H, in addition, symbolic instruction cards im-
mediately follow an instruction in this form, the instruction also indicates that
the words in the symbolic cards are to be inserted beginning withlocation A + n.
Since insertions are made as in an assembly, the words following B + m are

2-27

MC 102

automatically adjusted and the number of insertions and deletions need not be
equal.

When any, but not all, of the words generated by either BCI,DEC,LBR,MACRO
or OCT are deleted by a CHANGE, each of the subfields remaining from the
original instruction is carried as a separate word and is assigned a separate
alter number. In the listing, however, only the absolute word and relative and
alter numbers are shown. No symbolic information is shown in the operation,
variable and comments fields. Inall other changesto which a CHANGE can apply,
the comments associated with deleted words are deleted from the squoze deck;
remarks cards falling within the range of deletion by a CHANGE are not deleted
from the program.

When a CHANGE instruction of the form shown above affects a headed area,
it must be written:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
CHANGE HA, HB +m &

H represents a heading character.

The second form permitted is:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 | 15 16
CHANGE A+n g

A is a symbol and n is an integer which may be positive, negative or zero.

This form of a CHANGE instruction indicates that the symbolic instruction
cards which immediately follow it are to be inserted between the words in location
A +n and A+n +1. No deletions are caused by this form. If no symbolic cards
follow an instruction in this form the instruction is ignored.

When a generative pseudo-operation is inserted into a program by means of

a CHANGE instruction, the individual terms are not assigned separate alter
numbers.

2-28

MC 102

When insertions are to be made in a headed area, the second form of the
CHANGE instruction is written:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
CHANGE K$A+n ?

K represents a heading character and A+n is as previously described.

In the following list of restrictions all statements are made in terms of
the headed forms of CHANGE. These restrictions can be applied to the unheaded

forms by

considering an unheaded symbol to be headed by the character blank.

Restrictions:

a)

b)

c)

d)

e)

f)

g)

In a CHANGE instruction of the first form, HSA+ n must be either less
than or equal to H$B+m; otherwise, the CHANGE and the symbolic
cards following it are ignored.

No principal pseudo-operation (BES,BOOL,BSS,END,EQU,HEAD,ORG,
SYN,TCD) may appear within the range of the symbols A to B+m.

No principal pseudo~instruction, listing pseudo-instruction or re-
marks card may appear as an insertion by means of a CHANGE. Any
insertion which violates this restriction is ignored.

Remarks cards and listing pseudo-operations cannot be deleted by a
CHANGE. When remarks cards or pseudo-operations appear between
H$A+n and H$B +m, inclusive, they are not affected by the CHANGE.

No CHANGE instruction should specify the deletion of only part of the
words generated by a VFD pseudo-operation.

If a programmer macro-instructionis inserted by means of a CHANGE,
the definition must also be included with the group of modifications.
This does not mean that the definition must be included with the same
CHANGE that is to insert the macro-instruction. Instead, it may be
included by an ALTER or by another CHANGE. The definition may also
be placedinfront of the group of modifications and need not be preceded
by a Modify and Load pseudo-operation.

A modification by a CHANGE instruction must not overlap another
modification by an ALTER (see below) or by a CHANGE.

Example 1: Assume that in the following listing the instructions with the
alter numbers 79 and 80 are indicated to be in error.

2-29

MC 102

78 1 TRA CLEAR +4 RETURN

79 EXIT AXT , 1

80 1 /17 1 IF SENSE LIGHT 1 IS ON

Q1% DO NOT RESTORE INDEX
REGISTER 1

To remove the error indication by means of a CHANGE, the following in-
structions are necessary:

1 Location Operation Address, Tag, Decrement/Count
1 2 61 71 8 14 | 15 | 16
| CHANGE EXIT, EXIT+1
EXIT AXT **0, 1
—T—* SLT 1

(NOTE: **0 was arbitrarily selected to indicate modified addresses.)

Assuming there are no modifications which affected the alter numbering of
previous instructions in the listing, the instructions corrected would appear in a
listing of the modified deck as:

78 +1 TRA CLEAR+ 4 RETURN

79 EXIT AXT **0, 1

80 +1 SLT 1

81* DO NOT RESTORE IR 1

(The octal absolute has been omitted for the sake of clarity; however, the absolute
equivalents would also be changed.)

Example 2: Assume that the instruction SLT 1 is to be inserted following
the instruction in the list below, which has an alter number 9, without deleting
any instructions.

6 PRCOMM CLA 1, 4 GET PRINTER CONTROL WORD

7 +1 TDL * 2

8 +2 WPDA DOUBLE SPACE PRINTED IF

9 +3 WPDA CONTROL NEGATIVE, SINGLE IF +
10 +4 SXA RESTOR, 1 SAVE INDEX
11 +5 SXA RESTOR+1,2 REGISTER

The required modification cards are:

2-30

MC 102

The required modification cards are:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
CHANGE PRCOMM +3
SLT 1

After this change is made the listing appears as follows (assuming that there
are no changes which affect previous instructions):

6 PRCOMM CLA 1,4 GET PRINTER CONTROL WORD

7 +1 TPL *+2

8 +2 WPDA DOUBLE SPACE PRINTER IF

9 +3 WPDA CONTROL NEGATIVE, SINGLE IF +
10 +4 SLT 1

11 +5 SXA RESTOR, 1 SAVE INDEX

12 +6 SXA RESTOR +1, 2 REGISTER

2.3.1.2 ALTER

The ALTER pseudo-operation is analogous to CHANGE in that it may occur
in two forms similar to those of CHANGE and may be used to make insertions,
deletions or both. ALTER, however, inserts and/or deletes the equivalents of
symbolic source program cards instead of machine words.

There are two permissable forms for ALTER. The first is when Nl and N2
represent alter numbers.
Location Operation Address, Tag, Decrement/Count
112 6 | 7] 8 14 | 15 | 16
ALTER Nl’ N 9 g

This form indicates that the information corresponding to alter numbers N
through N,, inclusive, is to be deleted from the program. If symbolic cards are
associated with an ALTER instruction in this form, the instruction also indicates
that the cards are to be inserted into the program between N, -1 and N, t+1.
As with CHANGE, the number of insertions need not be equal to the number of
deletions since the words following N, are automatically adjusted.

In the second form N is also an alter number:

2-31

MC 102

Location Operation Address, Tag, Decrement/Count
1 2 6 71 8 14 | 15 16
ALTER N E

This form indicates that no deletions are to be made and that the associa;.ted
program modification cards are to be inserted between the symbolic instruc-
tions numbered N and N +1,

Restrictions:

a) For an ALTER instruction in the first form, N; must be less than or
equal to No; otherwise, the instruction and the symbolic cards to be
inserted are ignored.

b) Remark cards DETAIL, LIST, TITLE and UNLIST pseudo-instructions
cannot be deleted by an ALTER. When an ALTER specifics alter
numbers which include one of these in their range, the ALTER does
not affect the remarks cards or listing pseduo-instructions.

c) An ALTER instruction cannot delete an END card without also insert-
ing an END card.

d) An ALTER cannot insert an END card without also deleting an END
card. If an ALTER includes an END and does not specify the deletion
of an END, the END to be inserted is ignored.

e) If a programmer macro-instruction is inserted by an ALTER, the
definition must also be included with the list of modifications. This
does not mean, however, that the definition must be included with
the same ALTER that is to insert the macro-instruction. Instead,
it may be included by a CHANGE or by another ALTER. The definition
may also be placed in front of the group of modifications and need not
be preceded by a Modify and Load pseudo-instruction.

f) A modification by an ALTER must not overlap a modification either
by another ALTER or by a CHANGE.

Example 1: Assume that the instruction istobe corrected with alter number
5 in the following listing:

4%
5x ORG START
6 PRCOMM CLA 1, 4 GET PRINTER CONTROL WORD

The instructions necessary to accomplish the corrections are:

2-32

MC 102

Location Operation Address, Tag, Decrement/ Count
2 6 7 8 14 | 15 16

ALTER 5,5

ORG 3000

4%
5
6

numbers 92 and 93 are to be deleted.

91
92
93
94

After this correction is incorporated and, assuming no changes affecting
the preceding remarks cards, the listing appears:

PRCOMM

ORG
CLA

3000
1,4

GET PRINTER CONTROL WORD

Example 2: Assume that in the following listing the instructions with alter

NUMBER
NUMBER
ZERO
TSTBIT

EQU
EQU
EQU
PZE

The required instruction is:

24
12
0
STORAGE FOR TEST BIT

Location Operation Address, Tag, Decrement/ Count
2 6 7 8 14 | 15 16
ALTER 92, 93 <

After this change is made the listing appears (assuming no modifications affect-
ing preceding instructions) as:

91
92

NUMBER
TSTBIT

2.3.1.3 SYMBOL

EQU
PZE

24
STORAGE FOR TEST BIT

The SYMBOL instruction permits the assignment of a location symbol to a
word without requiring the deletion and subsequent insertion of the word.

There is one form of a SYMBOL instruction:

Location Operation Address, Tag, Decrement/Count
2 6 7 8 14 15 16
B SYMBOL A+n K

2-33

MC 102

B represents a symbol of from one to six characters which is to become as-
sociated with the word previously assigned the relative location expression
A + n (use relative numbers only).

If SYMBOL is used to associate alocation symbol with a word which already
has a location symbol, the new symbol does not replace the old; instead, the
two are made synonymous by an EQU instruction. However, if the symbol in the
location field of the SYMBOL instruction has been previously defined in the pro-
gram, it is defined again with the new value and becomes a doubly-defined
symbol.

If the location field or the variable field of a SYMBOL instruction is blank,
the instruction is ignored.

When a SYMBOL instruction is to assign a symbol to a word in a headed
area (for example, when A is headed) the instruction is written:

Location Operation Address, Tag, Decrement/ Count
1] 2 6 71 8 14 | 15 | 16
B SYMBOL H$}A +n K

H is the character by which A is headed, and B and A+ n are as described pre-
viously.

Restrictions: If a principal pseudo-operation appears in the range H$A and
H$A+ n, inclusive (or if A is unheaded) the SYMBOL pseudo-instruction above
has no effect upon the program.

Example: Assume that a symbol must, for convenience, be assigned the
instruction with alter number 25 in the following listing:

16 CONS6 PDX 6, 2

17 +1 LGR 18 COMPUTE # INSERT WORDS -
18 +2 ADD 1,4 START ADDRESS AND

19X +3 sTo ////// STORE.

20 +4 CLA CONS6 INITIALIZE FOR OCTAL IF TAG
21 +5 TQP *+2 OF PRINT CONTROL IS 4.

22 +6 ARS 1 IF OUTPUT IS OCTAL STORE

23 +7 STA STRTWD-2 3 IN CONVERSION ADDRESS

24 +8 CLA SWITCH

25 +9 LLS 0

26 +10 STO SWITCH

27 +11 AXT 24,1

28 +12 TCOA * DELAY UNTIL CHANNEL AVAILABLE

29X +13 NOP WKAREA+23,1
30X +14 STZ WKAREA+24,1 CLEAR WORK AREA FOR
31 CLEAR TIX *+1,1,1 CONVERSION

2-34

MC 102

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 | 15 16
SHIFT SYMBOL CON 6+9 {

ing no other changes) as:

16
17
18
19X
20
21
22
23
24
25
26
27
28
29X
30X
31

CON6 PDX
+1 LGR
+2 ADD
+3 STO
+4 CLA
+5 TQP
+6 ARS
+7 STA
+8 CLA

SHIFT LLS
+1 STO
+2 AXT
+3 TCOA
+4 NQP
+5 STZ

CLEAR TIX

2.3.1.4 ASSIGN

6, 2
18

1,4
/17117
CON6
*+2

1
STRTWS-2
SWITCH

0
SWITCH

24,1
*

WKAREA+23,1
WKAREA+24,1

*+1,1,1

The symbol instruction above would appear in a subsequent listing (assum-

COMPUTE # INSERT WORDS -
START ADDRESS AND

STORE.

INITIALIZE FOR OCTAL IF TAG
OF PRINT CONTROL IS 4.

IF OUTPUT IS OCTAL STORE

3 IN CONVERSION ADDRESS

DELAY UNTIL CHANNEL AVAILABLE

CLEAR WORK AREA
FOR CONVERSION

The ASSIGN pseudo-instruction is provided so symbols may be defined or

redefined by insertion of EQU, SYN or BOOL cards. The form of an ASSIGN
instruction is illustrated below:

Location Operation Address, Tag, Decrement/Count
1 2 6 7 8 14 15 16
ASSIGN H g

H represents a heading character which may be a blank.

This instruction must be followed by at least one EQU, SYN or BOOL in-

struction to perform one of the following functions:

a) To define new symbols and undefined symbols in a program.

b) To redefine symbols originally defined in a program by EQU, SYN or
BOOL instructions.

2-35

MC 102

An ASSIGN instruction may not be followed immediately by any instruction
other than EQU, SYN, BOOL or SYMBOL. (Note that a SYMBOL following an
ASSIGN does not terminate the effect of the ASSIGN.)

If an ASSIGN instruction specifies a non-blank heading character, all the
symbols used in the following EQU, SYN and BOOL instructions are headed by
that character. (In addition, the only EQU, SYN and BOOL instructions processed
are those for which the location symbol has been previously defined by an EQU,
SYN or BOOL card and is not multiply defined. Under these conditions, the new
definition replaces the old one.)

When an ASSIGN specifies a blank heading character, the EQU, SYN and
BOOL instructions are treated as follows:

a) If the symbol in the location field of a SYN, EQU or BOOL instruc-
tion is undefined or is newtothe program, the symbol becomes defined
as usual. The EQU, SYN or BOOL instruction defining the symbol is
inserted at the beginning of the program, preceded only by remarks
included at the beginning of the source program deck.

b) ¥ the symbol in the location field of a SYN, EQU or BOOL instruction
is defined in the new program by a SYN, EQU or BOOL and is not
multiply defined, the new definition replaces the old one at the same
point in the program.

c) In all other cases the symbol in the location field of a SYN, EQU or
BOOL instruction is multiply defined in the program.

When a SYMBOL card follows an ASSIGN, the location symbol is headed by

the heading character of the ASSIGN, providing the location symbol is less than
six characters long.

The symbol in the variable field of the SYMBOL is also considered headed
under the same condition.

Example: Assume that the symbols WKAREA and IMAGE are to be equated
in a program, The instructions necessary are:

Location Operation Address, Tag, Decrement/Count g
ASSIGN
WKAREA SYN IMAGE

The listing might then appear as follows (assuming no modifications affecting
four remarks cards at the beginning of the source program):

4%
5 WKAREA EQU IMAGE
6X ORG START

2-36

MC 102

2.4 DEBUGGING MACROS

The principal function of debugging macros is to permit the programmer
to investigate the contents of storage or control panel during the execution of
his program. The debugging macros are used during the development phases
of a program and are removed after debugging has been completed.

The debugging macros can be thought of as extensions of the pseudo-
operations of the SCAT source language and, as such, can be inserted into the
program either while coding or as modifications during Modify and Load. In the
latter case, use of the ALTER pseudo-operation inserts the debugging macro at
the desired location in the program.

When the Compiler or Modify and Load interprets a debugging macro, a
TXL branch occurs to the debugging subroutine, the function called for is ex-
ecuted, all main program indicators and storage cells are restored, and program
control returns to the main program at the instruction immediately following the
debugging macro.

The programmer has the option, through the use of debugging macros, of
specifying the format of information to be printed and whether or not he wants
his data to be printed on-line or off-line.

It is evident that there are several categories of debugging macros. The
types that call for the outputting of information are called information macros;
those that specify the output format are called modal macros; the macros that
permit selectivity of outputting are called conditional macros.

2.4.1 Variable Fields

Since the function and area of activity of debugging macros are varied, the
variable field of the macros is tailored to the function of each. In general, the
variable fields contain three types of information: location, format and count:

a) Location--specifies the proper area of activity for core storage cells
and the index.

b) Format--indicates the format required for ouput results of informa-
tion macros; specified format of VFD-introduced blocks of storage.

c¢) Count specifies:
1) Position of binary point in fixed point format.
2) Number of times a conditional macro is satisfied or unsatisfied.

3) Increment of every conditional macro.

2-37

MC 102

A typical debugging macro may be:

Location Operation Variable Field
CORE Lj,Lo,F,IT1,ITy

L1 = First location (absolute or sy’mbolic)

L2 = Second location (absolute or symbolic)

F = This field designates the format of the output and
may be coded as follows:

Format Code
Symbolic Instruction S
Fixed Point Number X
Floating Point Number F
Octal Integer (0]
Hollerith BCD Information H
Variable A\

IT1 (or Tll) --Indirect addressing and the tag information for the first location.

IT2 (or T21) --Indirect addressing and the tag information for the second location.

2.4.2 Information Macros

CORE L;, Ly, F, IT,, IT,,: Execution of this macro causes the outputting of
the core memory block from the lower location (defined by L, and IT,) to the
upper location (defined by Ly and IT2) in the specified format.

If the effective upper location is zero, the block of core memory from the
lower effective location to the top of core memory is outputted. If the effective
upper location is non-zero, it must not be less than the effective lower location.

PANEL (no variable field): Execution of this macro causesthe outputting of:

a) Accumulator and MQ--each in both octal and floating point format.

2-38

MC 102

b) Index Registers 1, 2 and 4--each in both octal and decimal.

¢) Sense Indicators--as an octal number whose binary equivalent has 0’s
for indicators which are off and 1’s for those which are on.

d) Sense Lights and Sense Switches--each a binary number, with 0’s for
those which are off or up, and 1’s for those which are on or down, re-
spectively.

e) Entry Keys--as an octal number.

f) Accumulator Overflow, Divide Check, and Input/Output Check Indica-
tors--each either on or off,

2.4.3 Modal Macros

There are two modal macros with variable fields (FORMAT and POINT) and
three without (ON, OFF and NUCASE). These macros set modes which, until
countermanded by other modal macros, influence subsequently executed de-
bugging macros.

FORMAT Bj, Fi, By, F2..., Bp, Fp: Execution of this macro gives a de-
sired meaning to the format code V.

If a block of words has been compiled by VFD pseudo-instructions, or other-
wise involves a heterogeneous format, information macros output these words in
proper format if the macros stipulate the format code V and if meaning has been
given to this format code by prior execution of a suitable FORMAT macro. For
example if locations B through B+2 contain the octal words 004003040010,
764240000000 and 254560000000, respectively, the macros:

FORMAT 6,0,15,X,25,X,12,H
CORE B,B+2,V

cause the first (leftmost) six bits of location B to be outputted as an octal number,
the next 15 bits as a fixed point number, the next 25 bits (continuing to location
B +1) as a fixed point number and the next 12 bits as Hollerith information. For
Hollerith (H), the number of bits should be a multiple of six.

POINT N: Execution of this macro defines the position of the binary point
within a word to be outputted in fixed point format.

N is an integer from 0 to 35 which indicates the number of bits which lie
to the left of the binary point.

ON (no variable field): After execution of this macro, and prior to execution
of OFF or NUCASE, debugging information is printed on-line, written on the BCD
output tape for peripheral printing.

2-39

MC 102

OFF (no variable field): After execution of this macro, and prior to execution
of ON, debugging information is written onthe BCD output tape for off-line print-
ing. This is the normal condition which prevails prior to execution of any ON
macro and after NUCASE.

NUCASE (no variable field): If a program remains in core memory while it
is repeatedly executed for different cases, occasioned, for example, by new data
cards being read into a fixed area of core memory, the NUCASE macro executed
at the start of each such case resetsthe POINT and ON modal macros to normal
and resets all counts generated by count type conditional macros to zero, in ad-
dition to outputting a case identification number.

2.4.4 Conditional Macros

WHEN: When the variable field conditions are satisfied, subsequent informa-
tion macros will be executed.

UNLESS: When the variable field conditions are not satisfied, subsequent
information macros will be executed.

AND: This macro connects conditional and information macros and extends
the power of the WHEN and UNLESS macros. For example, it may be difficult
to specify both upper and lower limits of a given variable with one WHEN macro.
However, if one limit is specified by a leading WHEN macro, the other limit can
be specified by a following AND macro. When using the AND macro with a WHEN
macro, both conditions must be satisfied.

OR: This macro connects aconditional and an information macro and extends
the power of the WHEN and UNLESS macros. Unlike the AND macro, the OR
macro permits the specification of more than one condition, any one of which
permits the execution of subsequent information macros.

EVERY N: This macro specifies the increment of outputting for successive
passes through a program loop. Its variable field consistsof an integer N which
allows a succeeding information macro to be executed the first time, and sub-
sequently every Nth pass through a program loop.

Variable Fields of Conditional Macros: All conditional macros except
EVERY can use the following general format for their variable fields:

L;.R,L,,IT,, IT

2’ 2

The relation subfield R is coded in one of the following ways:

2-40

MC 102

R Code Meaning Comparison Employed by (DB)
L Less than CAS
E Equals CAS
G Greater than CAS
LL Logically less than LAS
LE Logically equals LAS (redundant to E)
LG Logically greater than LAS

The other subfields involve some additional conventions peculiar to the
conditional macros.

The rules governingthe use of Lq, L2' IT; and IT2 are similar but not identi-
cal to those governing the CORE macro. The following rules govern the use of
terms in the variable field (assume that OP is a WHEN, OR, UNLESS or AND

macro):

a)

b)

c)

Case 1; OP (Ll)
1) When L, is zero or blank the macro is meaningless.

2) When Lj is 1 through 7 the contents of XR 1,2 or 4 or their result
is specified.

3) When L is greater than 7 a core storage cell is specified.
(NOTE: The above explanation is true if and only if at least one other
subfield in the variable field is expressed. Otherwise, this form of the
macro expresses a count type condition, for example, WHEN N, where
N may be any number. See programming examples d, e and {.)

Case 2; OP Ll,R

Recall that R expresses a relationship between L and the term that
follows, e.g., L1,E,Lg (L; equals Ly).

1) All rules of Case 1 for L; apply.

2) R must be one of the six symbols established for the desired re-
lationship.

3) Since Lg is not expressed, the relationship specified is between
Lj and zero.

Case 3; OP Lq, R,Lo

1) All rules of Case 1 apply to both L; and Lo.

2-41

MC 102

2-42

d)

e)

2.4.5

a)

b)

c)

2) R must be one of the accepted six symbols.
Case 4; OP L, R,Ly,IT;

1) If I is written anywhere in the fourth term, L is indirectly ad-
dressed.

2) L1 is not inferred as an XR but is always a core storage location,
regardless of magnitude.

3) If L; is blank it is regarded as a tagged address of zero.
Case 5; OP,L1,R,L9,IT1,IT2

All rules governing Lj apply to both Lj and La, using IT2 as address
modification specification for Lo.

Programming Examples of Debugging Macros

A STO X
CORE
BCLAY

After execution of STO X, all of core storage is outputted on BCD tape
in addition to the panel information and, immediately following, control
is returned to CLA Y.

Given: L50 is the location of 50

WHEN 4,G, L50
CORE

If the contents of XR4 are equalto or less than L50, the core macro is
not outputted; only when the contents of XR 4 are greater than 50 is
core memory outputted.

Given: Location 4 contains PZE 888; XR 2 equals 1

UNLESS 4, L, 2,1
OFF

If the contents of LOC 888 are equal to or greater than zero, the sub-
sequent output is on-line. Conversely, if the effective address of
location 4 is positive, subsequent output is on-line.

d)

e)

f)

g)

h)

MC 102

WHEN 8 (count type condition)
CORE 800,800,X

If this pair is inserted in aprogram loop for the first seven executions
of WHEN, CORE is inoperative; following the eighth execution of WHEN,
CORE becomes operative,

UNLESS 8 (count type condition)
POINT 18
CORE 800,800,X

If this sequence has been inserted in a program, the number of loca-
tion 800 is a fixed-point integer, properly outputted until eight outputs
have occured. Thereafter the sequence is inoperative, however.

WHEN 3 (count type condition)
UNLESS 3 (count type condition)
CORE A,A

If this sequence has been inserted in a program loop, the CORE macro
becomes inoperative on the first and second passes, outputting occurs
on the third, fourth and fifth passes, and all subsequent passes are
inoperative,

Given: X is to be outputted whenever it lies between 50 and 70. 50,X
and 70 are located at 1.50, LX and L70, respectively.

The macro program to give proper output can be written:

WHEN L50,L,LX
AND LX,L,L70
CORE LX,LX,X

Using the given locations in Example “g,” it is required to output X
when it is less than 50 or greater than 70; the following macro ac-
complishes this:

UNLESS L50,L,LX
AND LX,L,L70
CORE LX,LX,X

Given: X is to be outputted when X2 >100.X,10 and -10 are located at
LX,L10 and LM10, respectively. The coding is:

WHEN LX,L,LM10

OR LX,G,L10
CORE LX,LX,X

2-43

MC 102

1))

k)

Given: The first 50 non-negative values of X in a loop are to be out-
putted. The coding is:

UNLESS LX,L,0
OR 50 (count type condition)
CORE LX,LX,X

Here the UNLESS macro is associated with a count of outputs.

Given: X,Y and Z are located at LX,LY and LZ, respectively. X is to
be outputted the first 50 times that any of the following three conditions
are satisfied:

X exceeds Y and XR 4
X exceeds XR2

X exceeds Z and XR 4
The coding is:

WHEN LX,G,LY

OR LX,G,LZ
AND LX,G, 4
OR LX,G, 2
UNLESS 50

CORE LX,LX,X

(For a detailed explanation of the associative and commutative laws
governing this type of sequence see page 29, Part 3, of the SHARE 709
SOS Manual.)

2.5 MONITOR

2-44

The Monitor is a supervisory program written to control the processing of
job decks through the computer. A job deck consists of a program deck and its
associated control cards which designate the operation to be performed.

The control cards direct the Monitor to perform any or all of the following:

a)
b)

c)

d)

e)

Compile a program (listing and squoze deck as output).
Modify and load a squoze deck for execution.

Modify and punch a squoze deck to punch a clean (no modifications)
squoze deck.

Produce a listing of a squoze deck with or without modifications.

Permit the use of debugging macros.

MC 102

2.5.1 System Operation: Input Deck

When using the SOS system for an assembly, a debugging run or an execution
run, the first card of each job deck is a JOB card. The alphabetic characters
J,O0 and B are punched in columns 8-10 of the card. Also punched in columns
16-27 of the card are the name of the program and the programmer’s name or
initials -- to enable the operator to separate and return the results.

The input deck consists of any sequence of job decks, followed by a card
punched PAUSE in columns 8-12. Job decks include the following possible cate-
gories:

a) Compilation Job Decks
1) Card punched JOB in columns 8-10 with the name of the program
and the programmer (or his initials) in columns 16~27. Columns

11-15 must be blank,

2) Card punched CPL in columns 8-10 for column binary, or CPLRB
in columns 8-12 for row binary output.

3) At least two remark cards, one with the name of the program and
one with the name of the programmer.

4) Symbolic program deck from ORG to END card.
5) Blank card

6) PAUSE card

Non-modified, column or row binary squoze decks may be inserted in
the symbolic deck if preceded immediately by a SQZ symbolic card.
For column binary, SQZ is punched in columns 8-10; for row binary,
SQZbRB is punched in columns 8-13. The squoze decks incorporated
in the symbolic deck must be complete.

b) LS: List Job Deck
1) JOB card (as in a above)
2) Cards punched LS in columns 8 and 9
3) Squoze deck without modification

4) Blank card

5) PAUSE card

2-45

MC 102

c¢) Execution Job Deck
1) JOB card
2) Card punched LG in columns 8 and 9
3) Squoze deck*
4) Blank card
5) Any number of data sentence decks**
6) Card punched GO in columns 8 and 9
7) PAUSE card

The card sequence with a squoze deck is of major importance; manual
rearranging should be avoided. When no modification is desired there is
no change required in the squoze deck; it should be fed into the card
reader exactly as produced in the card punch.

d) List Squoze Deck

This job deck gives a dump-type listing of the squoze deck with modi-
fications. The listing does not contain any comments, but it looks like
a dump using the CORE macro, with the symbolic format specified.

1) JOB card
2) Card punched LG in columns 8 and 9

* If modifications are to be added, they areto be inserted as shown below:

Original Squoze Modification Deck

Miscellaneous cards preceding blank |1. Card punched MOD in columns 8-10
- 2. Modification cards

Blank card 3. Cardpunched END MODin columns 8-13
Remainder of squoze deck

** Data sentence decks are composed as follows:

1. Card punched DS1 in columns 8-10
2, Data sentence decks
3. Blank card

Data sentence decks may be used to provide for input data during the debugging

of programs. Additional information concerning DS1 cards is found in Subsection
2.5.3.

2-46

e)

f)

g)

MC 102

3) Squoze deck with modifications

4) Blank card

5) Card punched LIST in columns 8-11
6) PAUSE card

This type of deck must be used if there are no modifications.
PS: Punch New Squoze Deck

1) JOB card

2) Card punched PS in columns 8 and 9
3) Squoze deck with modifications

4) Blank card

5) PAUSE card

PA: Punch Absolute Binary

The following job deck causes the squoze deck to be decoded and
absolute binary cards to be punched according to SOS format.

1) JOB card

2) Cards punched PA in columns 8 and 9

3) Squoze deck with or without modifications
4) Blank card

5) PAUSE card

Compile and Execute

h) Punch New Squoze Deck and Execute

i)

List Squoze and Execute Deck

2-47

MC 102

2.5.2 Effect

of Control Card

Control Card

System Action Caused

Visible Results

JOB

CPLRB

CPL

PS

LS

LG

Initializes the Monitor and causes

Monitor to read next card.

Calls in the Compiler and trans-
fers control to the Compiler,
The Compiler compiles the pro-
gram, gives an error list and
punches a squoze deck. Control
is then transferred to the Moni-
tor, which reads in Modify and
Load to obtain a Modify and
Load error list and a program
listing.

Same as for CPLRB

Calls in Modify and Load,
punches a new squoze deck

and gives a program listing.
May be used with or without
modifications. MOD and END
MOD cards must be used even
if no modifications are present,

Calls in Modify and Load and
gives a listing. No modifica-
tions are permitted.

Calls in Modify and Load,
transfers control to Modify

and Load, decodes squoze and
writes absolute program on Bl.
At end of loading, it transfers
control to Monitor to read next
control card. Modifications are
permitted.

Prints JOB and remarks
from JOB card variable
field on-line.

Prints CPLRB on-line
and off-line. Pass SYSTAP
to C1 and C2, When C2 is
in, the system tape re-
winds. Prints error list
on-line or off-line; punches
squoze on-line or off-line
in row binary.

Same as for CPLRB, ex-
cept the squoze deck is
punched in column binary.

Prints PS on-line and off-
line. Punches new squoze
on-line or off-line. Gives
new program listing on-
line or off-line.

Prints LS on-line and off-
line, Gives program list-
ing on-line or off-line.

Prints LG on-line and off-
line.

2-48

MC 102

Control Card

System Action Caused

Visible Results

PA

GO

LIST

PAUSE

STOP

Calls in Modify and Load, decodes
squoze and writes absolute pro-
gram on Bl; then punches abso-
lute binary. Mods are permitted.

Reads SNAP (the DB1 program)
into core memory below 5670g;
clears memory from 5670g to
0; loads program from Bl until
a transfer card record is read;
then transfers control to object
card program,

Reads SNAP (DB1) into core
memory below 5670g; clears
memory from 5670g to 0; loads
program from Bl until a trans-
fer card record is read; ex-
ecutes core dump from 5670g
to 0; then transfers control to
Monitor to read next control
card.

Halts Monitor and allows con-
tinuing without rewinding all
tapes. Press START to read
next control card.

Rewinds all system tapes (B1,
B2, Al, A2, A3, A5) and halts
machine. Cannot re-start.

Prints PA on-line and off-
line. Punches absolute,

Prints GO on-line and off-

line.

Prints LIST on-line and
off-line.

Prints PAUSE on-line and
off-line.

Prints STOP on-line and
off-line.

2-49

MC 102

2.5.3 Specifications of the Data Sentence Program

A data sentence is defined to include an absolute decimal location giving
the initial loading address; this is terminated by an equals sign (=) which is
followed by the data. Consecutive words of data are separated by commas until
the end of the sentence, indicated by the marker (*); for example, 7083 =
-52,32. 1E5,39.1B6* is a data sentence which loads three numbers—integer,
floating and fixed numbers—into location 7083 and the two locations following.

The normal sentence data is floating point data, fixed point data and decimal
integers which are expressed according to regular SCAT rules and which may
follow each other arbitrarily.

To introduce octal data, the letter O is punched with the octal numbers en-
closed within parentheses; for example, 7083 = -52,32. 1E5,39. O(-7,7263),
509E20*, This sentence loads three decimals, two octals and one decimal be-
ginning at 7083.

The remaining rules of syntax are:
a) The card is used from column 1 to column 72; punching is continuous.

b) A sentence may start in any card column and extend to the end-of-
sentence marker. It may extend beyond a card; more than one sentence
may appear on a card.

c) Punching on a card must end with a comma or with an end-of-sentence
marker. If a blank then follows, the remainder of the card is ignored.

d) The last sentence of a data block mustend with a ($) instead of (*) and
should be followed by a symbolic expression. Transferto this location
is made after loading the data block; for example:

Card 1-A=7192=5,1E3,60.12,301.2*
Card 2-B=7195=170.1,0(-77),70,1B7$C

These two cards comprise a data block, which load as specified and
transfer to location C.

Two types of errors may occur during conversion:

a) Overflow/Underflow--normal zero is stored; conversion of next field
continues.

b) Mispunch~-when an illegal character is encountered, normal zero is
stored and processing is continued for the next field.

Error messages indicating column number and record are given.

2-50

MC 102

If either TCD’s or DS1’s are used the program must anticipate the logical
record arrangement and call program and data blocks after logical record 1 from
tape into core memory by use of calling sequences of the form:

TSX 82, 4
PZE A,, B
Bad data return

A is the number of the desired logical record. A=0 means to read the logical
record with the number that is one greater than the last one read. A non-zero
B is the location to which the Monitor returns after reading. B =0 causes return
to the location specified by the TCD, END or $ card.

2-51

MC 102

Section 3
OTHER PROGRAMMING STANDARDS

3.1 MERCURY PROGRAM WRITEUP SPECIFICATIONS

A standard for program writeups was established at the beginning of Project
Mercury to prevent duplication of effort and to systematize the work of the pro-
gramming group. Clarity and readability are the goals of program documenta-
tion, and effective organization is the means to achieve them. However, there
is no ironclad rule or outline for building a system; the arbitrary selection of
an outline for writing programs is a problem in semantics. The general outline
of program writeups (below) is an example of this problem, since the writeup
as an entity should indicate how the program is to be used, or the method of
usage. All program writeups (of Monitor, Processor, External and Simulation
routines) conform to the following breakdown:

TITLE

Introduction
Input Requirements
Output Requirements
Method

Usage

Within the framework presented above are many subcategories, each of
which is not necessarily applicable to every routine. The detailed breakdown
outlined below attempts to combine all possible subgroups within the general
outline. Textual material explains the application of a major heading and, by
implication, its subcategories. The specific type (or types) of routines to which
a subclass may apply is also indicated. However, only the general outline
applies to all programs; there is no similar rule for subcategories—deviations
are commonplace.

(NOTE: In the following discussion the term ‘‘program?’’ refers to that set of
machine instructions and pseudo-operations (BSS, BES, DEC, OCT, etc.) which
comprise a ‘‘running’’ deck, i.e., a deck that is ready to be ‘‘run’’ on the com-
puter, including the necessary control cards with the symbolic deck.)

X.X TITLE

Introduction—including the purpose and performance of the program and its
place in the system.

X.X.1 Input Requirements

All information and/or conditions accepted by a given program and inherent
to the execution of its stated purpose are input requirements. Examples are:

3-1

MC 102

Requirements d By*

Programs

Subroutines

Library Subroutines

System Macros Defined

Programmer Macros Defined

Constants (KXXXXX)

Tables (TMXXXX)

Communication Cells (MCXXXX)

Program Parameters**

Symbolic Locations for Storage***

Inputs from Radars through DCC

Conditions on Entry (AC,MQ,XR’s,
Indicators)

2 ZZE2EREEEEE (G

Ood W W @
= =
nunwn

=

X.X.2 Output Requirements

All information and/or conditions transferred out of a given program and
inherent to the execution of its stated purpose are output requirements. Ex-
amples are:

Requirements Used By
Tables (TXXXXX) MP
Communication Cells (MCXXXX) M
Program Parameters MP

Conditions on Exit (AC,MQ,XR’s,Indicators) M P E
X.X.3 Method

Those elements of mathematical methodology (equations, formulas, etc.)
which are necessary contributors to the performance of the program are in-

cluded in “‘Method.’’ This can be applicable to Monitor, Processor and External
routines,

X.X.4 Usage

This section refers specifically to the mechanical operation of the program
and indicates briefly the statistics necessary to the purposeful execution of the
program. Examples are:

* The following codes apply to all listings: M - Monitor, P - Processors, E -

External routines and S -~ Simulation.
** Numerical information used only with the given program.

*** Data locations used by as many programs as necessary and defined some-
where in the system. Called ‘‘common’’ by External routines.

3-2

MC 102

Data

c
0
(9
ol
[E’

Entry From
Exit To
Calling Sequence
Storage Required
Instructions
Macros
Temporary
Subroutines
Cells
Tables (TMXXXX)
Common (MCXXXX, TCXXXX-—Monitor)
Timing
Error Codes
Checkout
Operator’s Notes
Accuracy
Exempt Symbol (exempt from relativization)

22 REE=EREEEREER
s "™Wwoud
ol ol o!
wn

W "Rtudd
ololololololo)
nmw w

3.2 FLOW CHARTING STANDARDS

Flow charting standards were suggested to facilitate communication between
programmers and to maintain clarity and consistency. In many cases, however,
programmers used individual flow charting techniques. The symbols pictured
in this subsection are those recommended in the SHARE Reference Manual and
reflect ideas generally advanced by Von Neumann and Goldstine. All the symbols
presented here are provided on the IBM Programming Template, Form
X24-5884-5.

Operation, Function:

This symbol indicates the uninterrupted storing of instructions which involive
some form of data transformation—formulas, substitution expressions, input or
output. For input and output functions this box should indicate the process
initiated, the unit used, format, etc. The completion of the process should be
tested in a decision box.

3-3

MC 102

Decision, Comparison: A

a:b

E

This symbol is used for conditional, or branch, operations. For example, a:b
means compare a with b relative to the relationships specified on the exit lines.
This box can handle any test of yes/no, on/off, bit/no bit, etc. Of course, b can
be any variable or fixed quantity.

_,@___>

This symbol is used to connect parts of a flow chart to avoid crossing lines.
The designation in the circle should refer to box labels. This type of connection
should be used as a merge point when more than one entry into an operation
box is needed.

Fixed Connector:

Variable Connector:

—@

il

This symbol is used to indicate a switch having several alternate paths. The
switch is set previously in an operation box bya;»aor a=a;. The arrow (—)
means ‘‘replace?’’; the equals sign (=) means ‘‘is set equal to”’.

Closed Subroutine:

This symbol indicates the use of a subroutine. The box should be referenced
pictorially to either a subroutine writeup or a flow chart.

3-4

MC 102

Assertion:

—

This symbol denotes explanatory information concerning coding tricks, definitions
of new names, data changes or requirements, or describes the logic function
which follows.

Entries and Exits:

Begin S

Since every program can be considered a subroutine to some other program,
BEGIN and RETURN should be used for all programs. The calling sequences
should appear on the flow chart. Multiple RETURN’s should be handled by
using a RETURN as a variable connector.

3.3 PROGRAM CHECKS

Program checks are necessary for maintaining consistency in combining
one program with another so they may merge or separate easily.

Before a completed program was given to the librarian to be filed, the
following items were checked by the Standards Group:

a) A deck containing the six-character symbols used by the program,
i.e., those shown in the symbol listings of the constants used.

b) The job history of the program, including tests made, etc.
c) A preliminary writeup and listing.
After the program was checked, the following information was given to the

librarian;

3-5

MC 102

a) Correct symbolic deck

b) Squoze deck

c) Three copies of the listing (LS)

d) Completed writeup to be checked and typed
e) Flow chart

f) Sample output, if available.

3.4 SYMBOLS

Project Mercury subroutines, tables and data locations are each denoted by
six-character symbols. The first two characters are determined by the method
described below; the last four characters are used to assign mnemonic values
to a symbol, Any symbols used exclusively within a given subprogram and having
no meaning within the system as a whole are limited to five characters or less.
At his discretion the programmer may or may not use either or both of the two
identifying characters listed below.

All subroutines, tables and data locations (including constants, parameters
and communication cells) are given system symbols. The first identifying
character is always alphabetic and is mnemonic wherever possible; the second
character is numeric for all sections except Monitor, Simulator, Bermuda and
Cape Canaveral. For these latter four sections, the second character may be
alphabetic and may refer to the first character of the other sections. The
numeric characters are assigned in sequence as the subroutines are developed.

The following are examples of prefix assignments:

A0 (Main) Acquisition Data Generator
A3 Launch/ Abort Computation of Latitude and Longi-
tude
B (Main) Bermuda
BA Bermuda Short Arc Orbit Determination
BE Bermuda Editing
BH Bermuda Herget’s Method Computations
BI Bermuda Input
BO Bermuda Output

CC

DO

EOQ

FO

HO

I0

MO

BR

BS

C9

CH

D1

D2

D3

D5

I1

12

MF

MN

MP

MS

MT

(Main)

(Main)

{Main)
(Main)
(Main)

(Main)

(Main)

MC 102

Bermuda Retrofire Calculations

Bermuda Smoothing

Cape Canaveral Launch/Abort Processors
Canaveral Retrofire Calculations
Canaveral Herget

Differential Correction

Set Up Equation of Least Squares

Modified Least Squares

D.C. Interval Determination

Calculate and Convert R and V to Orbit Par-
ameters

Residual Block Calculations
Edit

Time to Fire Retrorockets
Herget’s New Method

Input

Transmission File

Log on Tape

Constants

Monitor

Monitor Suffix

Name of Ordinary Processor

Monitor Prefix

Subroutine for Monitor Use

Trap Processors

MC 102

MC

MX

NO

00

PO

RO

S0

™

3-8

MU
MY

(Main)

N1

N2

N3

N4

N7
(Main)
(Main)
(Main)

R1

R2

R5
R6

(Main)

Uo

Ul

U2

Input/Output Unit
Ordinary Processor Written by Monitor

Communication Cell

Routine External to the System
Numerical Integration

Set Up Function Table
Extrapolation and Correction
Calculate Second Derivations

Drag Acceleration

Variable Step Integration Equations
Output (displays and other output media)
Sliding Wire Impact Predictor
Re~-entry

Numerical Differential Correction

Development of Numerical Integration
Output Tables

Re-entry and Retrofire Calculations

Produces R, V and T at End of Retrofiring
Simulation

Tables

Utility Programs (The second character is nu-

merical and refers to the general function of the
utility program.)

Conversions—Coordinate Systems, Units

Elementary Functions

Binary-to-BCD for On-line Output

U3
W1POST (Main)

W2POST
W3POST
W4POST

W5POST

Vector Manipulations

Postflight Analysis
Launch

Abort

Orbit

Re-~entry

MC 102

3-9

4.1 TERMINOLOGY

Section 4
MATHEMATICAL STANDARDS

MC 102

The following alphabetical listing includes selected general astronomical
terms, mathematical symbology and specific Project Mercury reference quanti-
ties. Some of the information, by implication, is common knowledge; other data
was generated primarily for Mercury. All of the values and terms are used
either supplementally to or directly with Project Mercury programming.

Symbols for Dimensions

L = Length

M =Mass

T =Time

K =Temperature

TERM

DIMENSIONS SYMBOL

DEFINITION

Acceleration of Gravity

Apogee

Argument of Perigee

Ascending Node Unit
Vector

Azimuth

Coefficient of Drag

Date

=

g(Ho)

Z|

The ratio of the weight of a
material particle to its
mass.

Point on orbit farthest from
the geocenter.

The angle between the as-
cending node and perigee on
the celestial sphere.

Unit vector directed from
geocenter toward ascending
node.

The bearings of the capsule
in the horizon plane of the
station measured clockwise
from north, 0 < A < 360°,
A number which relates to
the retarding force exper-
ienced by a body in motion
through fluid.

Equals zero. Reference
time is midnight prior to
launch.

MC 102

TERM

DIMENSIONS SYMBOL

DEFINITION

Density

Eccentric Anomaly

Eccentricity

Elevation

Ellipsoid Flattening

Ephemeris

Eta

First Sum Vector

Geocenter

Geocentric Latitude

[p-3] o(H)

[Angle] Egy

[Angle] E

The ratio of the mass of a
homogenous portion of mat-
ter to its volume,

The angle included between
perigee and the perpendicu-
lar projection of the cap-
sule’s instantaneous posi-
tion from the major axis
on the major auxiliary
circle,

Ratio of the center-to-focus
distance to the semimajor
axis, a.

The capsule’s angular dis-
tance above the horizon
plane, measured from the
station,

Geophysical constant re-
lated to the shape of the
geoid.

A time historytabulation of
the ‘position of the orbiting
capsule with respect to its
reference coordinate sys-
tem,

Orbit element = e sinw.

First sum vector:

('Fyg- ‘Fy, 'F,)

The point of intersection of
the polar axis with the
equatorial plane.

The angle included between
the equatorial plane and a
line joining the geocenter
and a point onthe surface of
the earth, measured north
or south, -90°<¢'<+900,

4-2

MC 102

TERM

DIMENSIONS SYMBOL

DEFINITION

Geodetic Latitude

Geometric Altitude
Geopotential Altitude

Geopotential at Base of
Layer

Inclination

Inertial Coordinate
System

Inertial Longitude of
Greenwich

Lateral Area

Line of Nodes

Local Coordinate System

Longitude

[Angle]

L]

fL2r-2]

for-d
o]
[Angle]

[12]

[Angle]

¢

o

Hy

ICS

LCS

The angle defined by the
intersection of a normal to
the earth’s surface withthe
equatorial plane, measured
south or north,-90°<$<90°,

The increase in potential

energy of a unit mass lifted
from sealevel to a given
altitude against the force of
gravity.

Dihedral angle between the
plane of the equator and the
plane of the orbit.

Coordinate systemwithor-
gin at the geocenter (see
X, Y, Z).

Hour angle of Greenwich at
a reference time, tg.

Frontal surface area of
body; used in drag con-
siderations.

The line determined by the
intersection of the plane of
the orbit of the capsule
with the earth’s equatorial
plane.

Local coordinate system at
each radar station.

The arc of the equator in-
cluded between the prime
meridian and the meridian
of the place, measured
eastward 0< A< 3600,

4-3

MC 102

TERM

DIMENSIONS SYMBOL DEFINITION

Longitude of Capsule

Longitude of Node

Longitude of Perigee

Mean Anomaly

Mean Longitude of
Capsule

Mean Motion

Molecular-Scale
Temperature

Normal-to-Orbit Plane

Orbit (parameter or

element)

Perigee

Perigee Unit Vector

[Angle]

[Angle]

[Angte]

[Angle]

o]
]
]
]

i

o)

gell

Angle between the ascend-
ing node and the instantan-
eous position of the object,
p=N+w(mean anomaly of
the node).

The arc of the celestial
equator included between
the vernal equinox and the
ascending node, measured
eastward.

Sum of longitude of node
plus the argument of peri-
gee. T={+w

Angle between perigee and
mean position.

U=w + Mjy. Angle between
ascending node and mean
position.

Average rate at which the
orbiting capsule describes
an arc.

Mathematical variable in-
troduced for theoretical
reasons.

Unit vector normal to orbit
plane; sense determined
by orbital angular momen-
tum.

One of a set of quantities
which completely describ-
es an orbit.

Point on orbit closest to
the geocenter,

Unit vector directed from
geocenter toward perigee,

4-4

MC 102

TERM

DIMENSIONS SYMBOL

DEFINITION

Perturbations

Proportionality Constant
(units depend on those
of H)

Radius of Earth at
Equator

Radius Vector

Scale—height

Sealevel Value of g at
Latitude ¢ (scalar)

Sealevel Value of g at
Equator (scalar)

Second Derivative Vector

Second Sum Vector

Semimajor Axis

Sidereal Period

Slant Range

Slant Range Unit Vector

Slant Range Vector

]l

ol

\\F

L

|

Deviations from two-body
motion caused by atmo-
spheric drag—the earth’s
equatorial bulge, etc.

Radius vector from geo-
center to capsule in ICS,

Mathematical variable,
negative reciprocal of the
altitude derivative of log-
arithmic pressure.

Second derivative vector:
(X, Y, 2)

Second sum vector:
(\\F) \\F , \\F)
X y z

One-half of the maximum
chord of an ellipse.

Time an orbiting body re-
quires for one complete
revolution,

Distance from station to
capsule in LCS, R20.

Unit vector from station to
capsule

Vector from stationto cap-
sule

MC 102

TERM DIMENSIONS SYMBOL DEFINITION
[-

Speed LT 1] \% The ratio of distance tounit
time.

Station Distance from FL] Rs

Geocenter -
Temperature _K] TK
Temperature Gradient LKL-2T2] L Negative of the ‘‘lapse rate”’
(scalar) —slope of the altitude—
temperature profile,

True Anomaly [Angle] v The angle measured from
the center of the orbit in
the direction of motion be-
tween perigee and the cap-

_ sule position.

Unit Vector along X Axis [L] I

Unit Vector along Y Axis [L] J

- -

Unit Vector along Z Axis L K

Value of T, at Altitude H,_ K] _ (Tyh,

Velocity Vector LT-I_ v Velocity vector in ICS,

Xi £ Orbit element = e cos w

V Component in X Direction FLT-]‘ v,

V Component in Y Direction LTt vy

V Component in Z Direction [LT'I] v,

X (ICS) LL] X ICS axis directed from
geocenter toward vernal
equinox.

Y (ICS) [L] Y ICS axis in earth’s equa-
torial plane forming a
righthand set with Z and
X axes.

Z (ICS) [L] / ICS axis directed from
geocenter toward north
celestial pole.

4-6

MC 102

4.2 COORDINATE SYSTEMS AND CONVERSIONS

There are six coordinate systems used by the NASA-Langley Space Task
Group; two of these systems are the Local and Inertial Coordinate Systems
(LCS and ICS) used for Project Mercury. The six systems, and the coordinates
which each employs, are:

a) Burroughs-General Electric quasi-inertial f, n ¢

b) Spherical inertial Ap T L, Vi, Y, lﬁi
c) Pod rectangular u, v, w

d) IP 709 quasi-inertial XY, Z

e) General Electric radar R, A, E(LCS)

f) True Cartesian inertial, referenced o
to the first point of Aires. (T) X, Y, Z (ICS)

The coordinates for the Inertial Coordinate System in IBM notation
are X, Y, Z.

The earth is neither a point source nor a homogeneous body and, therefore,
does not reduce to a point attraction. Also, it is a rotating body and is non-
spherical; hence, a simple potential function whose various first derivatives
yield the components of the force cannot be deduced. This condition causes an
expansion in terms of a trigonometric series whose coefficients are Legendre
polynomials. The resultant force vector is thereby expressed. The leading

coefficient is pu = 3.9860266 x 1014 m3/sec2. There is no first harmonic; the
second harmonic, Jg, is -1.755 x 1022 m95/sec?; H, the third harmonic, is not
used; J4=-1.59 x 10~6 m?/sec? is the fourth harmonic.

In general, if @ is the potential of the earth’s gravitational field at a
distance r from its center and at a declination § , then:

2 1 1 a 3
¢=Kri [1+§ Iy (ffg)z (1-3sin25) T35 H(—r‘?’

. . 1 4
(3 sin & -5 sind §)+3 J, (af)

(3 - 30 sin2 § +35 sin §)+. .]

4-7

MC 102
where:
Ke =MG

G =universal constant of gravitation
M =mass of the earth

ae =earth’s equatorial radius

Mercury uses the International Ellipsoid which has an ag value of 6.378145
x 106 meters. The other values of the International Ellipsoid are:

a) Flattening: f=1/298.3=0.00335233
b) Rotational speed of the earth: w=,729211508 x 10~4 rad/sec
c) Equatorial gravity: ge = 9.78034 m/sec?
Using a = 637814500 cm., f = 1/298.3, and ge = 978.034 cm/sec2, then
Jy u
g = (1+Jog+ —) — -aw?
2 a2

when @ = 0.0000729211508 rad/sec.

f 9f P
Jg = (1-3) -1 -7) &
and Jy = 3f (f- 25
33&)2

(In both of the previous cases, P= Therefore:

)
go = 978.034= (1+£ +12) £ - (aw2)(3+3L).
) 27
Dividing 978.034 by a, each length becomes units of a =1. In defining units
of time, T(sec) is such that u=1, a=1, and f =1/298.3. However, when using the
above Jg and J4 values, T = 806.8104 sec,usinga3= p T2 and solving the following
equation:

1 (1+ £+ £2) = 0.0000015334145T2 +0.00000000798388T2,

(NOTE: An arithmetic error which yields a new T was noted. However, no

change will be made at least until the ultimate spheroid, the DOD spheroid of
1960, is declassified.)

The mass of the earth is the unit of mass in Hg units and is 5.9765 x 1024
kilograms,

4-8

MC 102

To correct observed data to a geocentric coordinate frame and, conversely,
to compute acquisition data for each site, the position and coordinate system of
each site must be accurately known. The reference system used in specifying
geodetic latitude, longitude and altitude is, as specifiedby Cape Canaveral down-
range findings and the U.S. Coast and Geodetic Survey, the Clarke spheroid of
1866.*

Page 496 of the American Ephemeris and Nautical Almanac, 1960, refers to
the International Ellipsoid of Reference.** The American Ephemeris also pro-
vides the following for converting from geodetic latitude, ¢, to geocentric
latitude, ¢

¢Il'=¢ ~11° 356355 sin 2¢‘+12'1731 sin 4¢‘-0.0026" sin 6¢. The notation
11° 35" 6355 means 11 minutes, 35.6355 seconds of arc.

Local radius at a given (geodetic) latitude is given by:
p=a(0.998320047+0.001683494 cos 2¢-0.000003549 cos 4¢+0.000000008 cos 6¢)
The latter results if there is an expansion and {/a is accepted; then it is r-h in

units. Also from the American Ephemeris comesthe value for the mean solar
day: 1.0027379093 x the mean sidereal day (p.495).

Since the Mercury orbit is a conic section, five quantities define its path;
its position at a given instant determines its later position. The equations of
motion (three in number) are of second order, each requiring two constants of
integration. Thus, six constants are used to specify the motion completely.

When determining the relationship between time and place in orbit, the
following elements are used:
a) True anomaly: v

b) Mean daily motion: n -Z-PE-, when P = sidereal period.

c) Eccentric anomaly E4: nt = E; - e sin Eg

d) Mean anomaly: M, =nt. Therefore, My=E; - e sin E, (Kepler’s
equation).

In computing an ephemeris for the capsule’s nearly-circular orbit, Herget
introduced certain elements to overcome underflows of e 0. These ‘‘Herget
elements’’ are £ =e cosw and n=e sin w.

* ac =6378206.4 meters; l/fC =294.979; and b, = 6356583.8 meters.

** a =6378388 meters; 1 =297; and e2 =0.006722670022333322.
f

4-9

MC 102

The classical orbital elements are:
i = Inclination

1 =Longitude of ascending node (Both i and {} determine the orbital
plane through the center of the earth)

a = Semimajor axis (or n = mean daily motion; n = ka-3/2)
e = Eccentricity (¢ = angle of eccentricity; e = sin ¢)
w = Argument of perigee
T = Longitude of perigee = w + §)
T =Time (usually at perigee or an epoch, i.e., date ~mean anomaly)
Illustrations (see Figures 4-1 through 4-8) on the following pages depict the
coordinate systems; the angular relationships of latitude and longitude; several

relative angular values between the earth, orbit and the capsule; and orbital
projection factors.

4-10

MC 102

Capsule Position

1 7
~£_!

HORIZON PLANE

Station.
~.

X axis — Axis in horizon plane perpendicular to Y axis

Y axis — Axis in horizon plane directed toward north pole

Z axis — Axis perpendicular to earth surface; zenith axis
A — Azimuth angle; measured clockwise from north pole
E - Elevation Angle
R - Slant range

FIGURE 4-1. RADAR COORDINATE SYSTEM

4-11

MC 102

Capsule
North Celestial Pole

z

I

J Y
>,
|
/X X, Y, Z - Inertial coordinate system,
T I, J, K = Unit vectors along ICS.

t — Radius vectors.
€ — Slant radius vector.
Rs - Station distance from geocenter.

Vernal Equinox

FIGURE 4-2. OBSERVATIONAL FRAMEWORK, INERTIAL COORDINATE SYSTEM

4-12

MC 102

Perpendicular to Horizon
Plane at Station

Equatorial

Plane

NOTE: Oblateness of the
earth is slightly exaggerated.

(}5' — Geocentric latitude
¢ — Geodetic latitude
t — Radius vector

FIGURE 4-3. LATITUDE RELATIONSHIPS

4-13

MC 102

North Pole

Ao
‘/
Station
x
. ¢
VYernal Equinox
Greenwich
0°
A Longitude

A° Jnertial longitude of Greenwich

FIGURE 4-4. LONGITUDE RELATIONSHIPS

4-14

MC 102

/Mo'\of Auxiliary ¢, lo

L (Capsule Projection
on Major Auxiliary

\Circle)

\
C (Capsule)

\

(Apogee) A P (Perigee)

E
(Earth)

/" NOTE: Orbit greatly

/ exaggerated
S~ —_— . — —
OB — Semiminor axis (b)
(1_/_\' ~ Semimajor axis (a)
OC - Radius vector, earth to capsule (F)
EP - Perihelion
AP - Aphelion
21 OP - Eccentric anomaly (Ea)
ZCEP -~ True anomaly (v)
OE

~—— _ Eccentricity of orbit (e)

OA

FIGURE 4-5. RELATIONSHIPS BETWEEN EARTH, ORBIT AND CAPSULE

4-15

MC 102

North Celestial Pole

z

/Ascending Node
/x

Vernal Equinox

Y, Z ~ Inertial coordinate system.
1, J, K = Equatorial reference frame.
N, R — Orbit coordinate system.

T — Vernal equinox.

P- Perigee unit vector.

i — Angle between orbit and
equator plane.

Q - Longitude of node.

@ — Argument of perigee.

FIGURE 4-6. PROJECTION OF ORBIT ON CELESTIAL SPHERE
(UNIT VECTORS AND ANGLES DISPLAYED)

4-16

MC 102

| y4
(' \
—— —— -~
~
™~
M ~N
R N
Mean Position
- -
- - Capsule Instant
— Position
/
-
- .
-
== A Y
> .
‘ ‘ \4 Ma 02"\
9"\0
Ga
P Perigee

X, Y, Z - Inertial coordinate system.
M, N, R — Orbit coordinate system.

r — Radius vector.

v — Longitude of capsule.

U — Mean longitude of capsule.

v — True anomaly.

Ma - Mean anomaly.
P - Perigee unit vector.

FIGURE 4-7. PROJECTION OF ORBIT ON CELESTIAL SPHERE
(LONGITUDES AND ANOMALIES DISPLAYED)

4-17

MC 102

erigee

X,Y.Z - Inertial coordinate system
M,N,R ~ Orbit coordinate system

— Argument of perigee

— e cos @ = projection of & on N

— e sin @ = projection of & on M

rsoen g

= Radius of earth at equator

FIGURE 4-8. XI, ETA COORDINATES

4-18

MC 102

4.2.1 National Bureau of Standards Conversion Factors

The conversion factors listed below are constant values which have been
established from National Bureau of Standards weights and measures. Partici-
pating Project Mercury organizations have agreed on these basic measurements
as the reference standards upon which to base pertinent computations.

a) One international foot = 0,3048 meter (exact).
b) One international nautical mile = 1852 meters.

c) One international pound =0.4535923 kilograms.

d) One slug =9.80665-+ 0.3048 = 32.17404855 pounds (International Com-
mission on Weights and Measures).

e) One American Survey foot =0.30480061 meter.

4.2.2 Real Time Impact Prediction Coordinate Transformations

The following paragraphs indicate the coordinate systems, transformations
and format of the data to be transmitted to NASA in real time. Position and
velocity components, transmitted at 0.2-second intervals are arranged in the

. following format (in the order shown):

t = time of data referenced to first motion (counts in units of 0.1 second
in four-bit BCD)

X = parameters in floating binary

y = inertial position and velocity

z = components (see Figure 4-11)

X = position in CUD (20,925,672.5 ft.)
y = velocity in CUD (CUD/CUT)

z = CUT =806.832 sec.

3 =logical checksum of t, X, ¥, 2, X, y, 2

Local Azusa (Mark I) Coordinate (xv, y’*, z’-) System (see Figure 4-9):
This system is a configuration of angles between Azusa tracking system base-
lines and the local vertical. The x‘ y- plane is assumed to be tangent to the
earth atthe Azusa site; z--isthe local vertical. A clockwise rotation of 70 10°'53:° 6
about the z- axis orientsthe system suchthat the y- axis is north and the x‘ axis
is east.

4-19

MC 102

Local Radar Coordinate (x’y’z’) System (see Figure 4-10): The x’y- plane
is tangent to the earth at the radar site, with y- north and x east; z‘ is the local
vertical.

z II= z ’Up

Antennas

24

x’- East

FIGURE 4-9. LOCAL AZUSA (MARK |) COORDINATES

2" -Up
| 4

—p v - North

x” - East

FIGURE 4-10. LOCAL RADAR COORDINATE SYSTEM

4-20

MC 102

Auxiliary Coordinate System (xy z)(see Figure 4-11): This system is a
moving geocentric equatorial system with its origin at the center of the earth.
The z axis is the axis of rotation of the earth, the X axis is in the plane of the
equator through the Greenwich Meridian, and the y axis is chosen so the system
(X¥z) is right-handed.

Inertial Coordinate System (X, vy, z) (see Figure 4-11): This is the system
in which the elliptical trajectory parameters and impact point are computed.
The origin is at the center of the earth (assumed unaccelerated for the duration
of flight), andthe xy z system coincides with X y z at time t = t;; X ¥ Z is a moving
system, and x y z is assumed fixed with respect to the stars.

Azusa Transformations:

a) Azusa data is sent to the Impact Predictor computer in the form of
two direction cosines (1] and mj) and a slant range (Rj). After these
parameters are corrected for parallax, zero sets and refraction,
they become 1;, m; and R;.

b) The rectangular coordinates in the local Azusa system (x;‘y; z) are:

Xj'= LRy
yi = mjRj
zi"= Rj (1l -12i -m2) %

c) The rectangular coordinates are rotated to the north/east system
(x'y’z’) by:

x{ =x{ cosd - y{’ sind
yi =Xi" siné+ y{ coséd
z = z{’
d) The coordinates are transformed into the inertial system (x, y, z) by:
Xj =Xg +a11 Xi+a12yj +a13 z{
Yi =Y0 +ag1 Xi +agg yi +ag3 z{
zj = zg +a3]1 Xj +232 yi +233 Z{
where ajj values are the direction cosines of the x4 y;, z‘ system, and

the xg, yg, zg, are the position components of the Azusa site in the
X, y, z system. These are defined by:

4-21

MC 102

I \ x-Greenwich

1 Geodetic latitude %S P< %

y: Geocentric latitude _—g-S ¢ < %
<

X Longitude (positive west) -7

FIGURE 4-11. INERTIAL COORDINATE SYSTEM

4-22

MC 102

ajy=sin A X9 =Rp cosyrcosA +hajg
ag]= cos A yo =Rp cosyrsinA +h agg
ag1=0 29 =Rg sinyr+h agg

a12= -cosA sin¢

ago= sin A sine ¥ =tan™" [:;3. tan <p:|

agg = COS ¢

a13= COS A COS ¢

= —gi = ac
a99= -sinA cos ¢ Ry =
[(a2 - ¢2) sin2y+c2]%
ag3 = siny
where:

a = 20925832 ft. = semimajor axis

c = 20854892 ft. = semiminor axis

based on the Clarke spheroid of 1866

h = height of Azusa site.

e) Azusa data (lj, mj, Rj) is smoothed to obtain velocity components
(1, m, R) by:

li=c “j:aj 1i+j

mj = c] ?:ajmiﬂ- j =-16—4

Ri= c1 ?ajRi+j

where the aj values are least-squares-determined data multipliers.

f) Velocity components in the local Azusa system (x‘; y‘; z9) are:
X{'= Riii +Rily

¥i'= Rjm; +Rim;

zi’

L (ki - x5 &0 - y{5)
z

4-23

MC 102

4-24

g)

h)

i)

The components are rotated into the north/east system (x, y, z) by:
%{=x{"cos & - y{' sind

¥i=%{" sin & + y{" cos 8

zi = z{

The rotation of components into the geocentric equatorial system is:
ki= a11%{ +a1a¥{+ a13if

Vi= a1k +aga¥{+ agaZ{

Z; = ag1k{*+ agoy] + ags]

Inertial velocity components are then:

% = X ~wyj

¥i= Vi +ox4

where w is the angular velocity of the earth.

(w=.058835124 rad/CUT)

Radar:

a)

b)

Local radar position (x’ y’ z'):

Xi= Rj cos Ej sin Aj

yi= Rj cos Ej cos Aj

zi = Rj sin Ej

Position in the inertial system (x, y, z) is obtained by:

Xi = X0+ 211X{ + 312¥] + 2132{

Yi= Yo+ ag1x{ + agayi + aggzf

zi = 20+ a31X{ + agayj + agzz{

where the ajj values are the direction cosines of the local radar axes

(x, y, z) with respect to the x, y, z system, and X, yg, 2g are the
position components of the radar site in the x, y, z system.

c)

d)

e)

f)

MC 102

Radar data (R, A, E) is smoothed to obtain velocity components
(R, A, E) by:

A;=Ca]2 Bi Aiij

Bi=C2 2 8 Ei}j j= -46—4

R; =Cy ? Bi Ri4j

where the Bj values are least-squares-determined data multipliers.

Velocity components (x°, y’, z’) in the local radar system are:

x{ =R; cos E; sin A;j - EjR; sin Ej sin A; + Ajy{

y{ =R; cos Ej cos Aj - E;R; sin E; cos Aj -Ajx{

z{ = Ri sin Ej + EjR; cos Ej

The components are further transformed into a geocentric equatorial
system by:

ki =a11% + ajo¥f + a13%

Vi =ag1% + ago¥i + aggk

-~

21 -_-a31)'ci' + a32jri’ + a3321’
The inertial velocity components are:
ki :5(1 - Wyj

Vi =YVit+ oxj

Transformation Constants:

The following values are the rotation and translation constants associated
with present Cape Canaveral instrumentation.

4-25

MC 102

1.16 XN-1 XN-2
P 28°28 '527.792 28°13°357.279 26°36°547°.984
A 80°34°367.231 80°35” 587,051 78°20°5377.188
h 44.79 ft. 27.12 ft. 46.38 ft.
ai .98650575 .98657061 .97939272
a9 16372662 .16333529 .20196503
a 0 0 0
o?; -.07807670 -.07725070 -.09047981
a9 .47043734 46660627 .43876541
a39 .87897253 .88108507 .89403484
a3 .14391120 .14391229 .18056378
ag3 -.86711145 - .86925263 -.87561122
az3 .47687238 .47295780 44799742
xq 3013788.4 3013770.6 3781024.7
Y0 -18159048.0 - 18203644.0 - 18335392.0
zq 9919065.3 9837508.8 9317616.3
5.16 Azusa MK |
P 24°7°67°114 28°297287,9451
A 74°30°157783 80°33732772744
h 4291 f1. 21.9 f+
an .96365096 .98645493
ag .26716442 .16403250
a 0 0
u?; -.10916953 -.07824784
a9 .39376997 .47056508
a39 91270324 .87888893
ay3 .24384183 14416634
a3 -.87952735 -.86698432
a33 .40862302 47702643
xQ 5105489.5 3019129.7
Y0 -18415288.0 -18156374.0
zq 8497720.5 9922263.3
|

4-26

MC 102

4.3 CONSTANTS

The letter K is thefirst prefixcharacter in all constants: the five characters
following it may be mnemonic. An effort has been made to assign names to
Project Mercury constants in such a way that the definition and forms of the
constant are evident from the symbol itself.

Quantities within the system are named according to adopted terminology.
Integers to 99999 which are in the address are assigned their actual values; if
the value consists of less thanfiveintegers, it is preceded by zeroes. The letter
D is the second character of those integers in the decrement. Floating point
constants include decimal points, wherever possible.

Four types of constants are indicated on the following pages: alphabetical,
numerical, octal and physical. The alphabetical and numerical listings (Sub-
sections 4.3.1 and 4.3.2, respectively) contain identical values merely arranged
in different order. Though present in both listings, physical constants are
indicated by asterisks only in the alphabetical listings. Octal constants are
presented separately in Subsection 4.3.3.

The numerical listing pro forma is not accepted by the computer; however,
alphabetical and octal listings are accepted. Physical constants differ from
numerical constants in that the former are generally measurements and the
latter are not.

4.3.1 Constants (Alphabetical Order)

K00000 DEC 0
K00001 DEC 1
K00002 DEC 2
K00003 DEC 3
K00004 DEC 4
K00005 DEC 5
K00006 DEC 6
K00007 DEC 7
K00008 DEC 8
K00009 DEC 9
K00010 DEC 10
KQ0O01l1l DEC 11
K00012 DEC 12
K00013 DEC 13
K0001l5 DEC 15
K0oo0l6 DEC 16
K00017 DEC 17
K00018 DEC 18
K00019 DEC 19
K00020 DEC 20
K00021 DEC 21
K00023 DEC 23 IOMANI
K00024 DEC 24
K00025 PZE 25
K00026 DEC 26
K00027 DEC 27
K00028 DEC 28
K00030 DEC 30

4-27

MC 102

K00031
K00032
K00033
K00034
K00035
KO0037
K00039
K00040
K00041
K00042
K00045
K00046
K00047
K00048
K00051
K00052
K00053
K00054
K00O0S
K00060
X00063
K00066
K00O075
K00084
K00085
K00086
K000%90
K00O0.1
K000.2
K000« 5
K0009
K000JB
KOOONB
K00120
K00154
K00155
K00156
K00160
K00163
K001l64
K00165
K00166
K0016&7
K00168
K00179
K00180
K00198
K00ls0
KOOle4
KOOle5
K001S51
K00218
K0o219
K00220
K00221
K00222
K00224
K00256
K01800
K002,0
K00245
K003.0
K00420
K0G4,.0

4-28

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
PZE
PZE
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DeC
DEC
DEC
DEC
DEC
DEC
DEC
PZE
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

0e5
«900
30 NON CONSTANT
30
120
154
155
156
160
163
164
165
166
167
168
179
180
198
1.0
le&t
1450

218
219
220
221
222
224
256
1800
240
265
340
420

IOMANI
MYSCRD
ZIP8 = LA
NOo, OF ATTEMPTS TO CONVERGE TABLt
NOe OF ATTEMPTS TO CONVERGE ONCE SET
LAUNCH

IF ONEsMUTILATE DENSITYs K ONCE SET N4DENS

K10 = LsAs0O9R

AOSTAD

K00512
K00540
KO060
KQ0640
K00.01
K00O«04
K00e25
* KO0eAlL
* KOOeA2
*K00eA3
* KOOeAL
*K00.AS
% KOOsAE
= K0O0«BO
*K0Q0,.B1
* KODB2
*K00eB3
*K00eB4
* K0O0«B5
+ K00eB6
*K00.C2
*K004GO
*K00eG1
*xK00eG2
*K00eG3
*K00sHO
*K00eH1
*K00eH2
*K00sH3
*K00e«MH
*K00PI
*K00eSH
*K00UT
K01000
K01023
K01024
K010e60
K0130e
*K013.4
K0150.
K0le75
K01l.E3
K0300.
*KO3HPI
K0400e
*K045.4
*K04oM5
KO600.
K07200
KDelb4
*K0.1DG
KOe341
K0e550
*K045DG
K0e650
*K0es6E4
KOe9E4
*K0e.ALP
*K0.A2P
*K0eA3P
* KOs A4P
*K0sASP
*K0esA6P
*KO0eALT

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

512

50

60

660

o001

o 04

0e25
¢46038333
-1409306667
1641426667
~140424
¢41235

~e 0682
0065495756
« 067409063
~e110635752
¢ 104370596
-e¢05999(091
«019393189
-« 002708609
¢ 00324696
-e0963348773
e 0074115416
-~e0009904103
«0000796407
=-e5
20648396164
~40139550265
«0015790344
« 0764366916
314159265
«0012394486
80648104
1000

1023

1024

10,

130
13,44684
150

175

100040

300
44712388975
4006
«021504685
«0000434146436
600

7200

0144
20174532925
e341

¢550

¢ 0B72664626
«650

« 0028672914
9000040
2028573082
~541099041
655591931
=4482397487
190782077
-e31559193
«00333874

K10OP = LsAsOeR

=ZP2=LsA
~ZP2 = LsA

K3P = LsAs0sR
K12 = LA

~ZP7 = LsA
MINUTES PER HG UNIT OF TIME

3 HALVES PI(RADIANS)

-ZP12-04R

4509000 FT IN HG UNITS

CONVERTS FROM KG/M CUBED TO HG UNITS

=ZP11~0sR

ONE DEGREE IN RADIANS

LPBD SCALE FACTOR FOR ORDINATE
=ZP1 = LsA

60,000 FT IN HG UNITS

MC 102

R5RARF

N4DRAG
N&4DENS

AOSTAD
I0HS09

10HSGB
N4DRAG

4-29

MC 102

*K0+BOP
*K0.B1P
*K0e.B2P
*K0.B3P
*K0eB4P
*K0eB5P
*K0+B6P

K0.CTB
*K0+MPR
*KQ4RAD
*K0eS1D
*K0sSF1
*¥X0sSF2
*KQeSF3
*K0+SF4
*KDeSFS
*K0+sSF6

KOMIN3

KOMINS

KOZERO

K10.E5

K15360

K1e525
K2700.

K32.E3
*KE(G)e
*K6(H)
*KB806,s8
*K843M3
*KCoNVF
*KCDeCV
*KCDoCW
*KCFTSC

KCNVRG
*KESEEE

KECRT

KFEEBD
* KGAMMN
*Ke0168
*Kel1l2DG
*Kos1RAD
*Ke2030
*Ke30SC
Ke40QDG
Ke82DG
*K+BETA
*K+DELT
*KeDLTA
*KsECC2
*KeINB2
*KoeMACH
*KoMUTE
*KeNGHC

*KKKPI2
*KLoHGT
*KLPBSF
KM0000
KM0OOO1

4-30

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

DEC

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

03042245¢
046038360
=-4¢54653605
047142857
-s26060681
«(08247355
~e01136740
1e-15
34374746771
6378145,
«01745241
58614358244
1278745
7326697805
16248155068
24424232602
65142620273
-3

=3

0

10000040
15360

1e525

2700
32000.0
-¢33189710853
-e22386742572
80648134
Be3E-3
63784145
33693917342
38166057843
259364294946
0000017
24718281828
0003

200E=7
~44211550

¢ 0166666666680
-e2094395102
57429577951
020302247

0 1454441043E~3
¢6981317008
1e431169987
059341193
e52

¢ 00066451326
6e6934215E~3

TEST IF F TABLE CONVERGED ASSUMED
-DGHR
EQUATORIAL RADIUS OF EARTH IN METERS N4DRAG

SINE OF ONE DEGREE AOSTAD
SF1 = LyA
SF2 = LA

SF3 = LsAsOsR
SF&4 = LsA»OsR
SFS = LsAsOsR
SFé - LsAsOsR

TOMANT
=DGHR
R6BOTH
R6BOTH
SECONDS PER IG UNIT OF TIME POSWIP
8e¢3 MILLI SECONDS TO SECONDS LAUNCH
KM/HG UNITS OF LENGTH N4DRAG
CONVERSION FACTOR TU FT/SEC POSWIP
CONVERGENCE CRITERION
TEST FOR E CRITICAL CORVTH
GAMMA MEAN IN DEGREES POSWIP
HS, INPUT TIME CONV CONSTANT IOHSGB
=IP5 = LsAs0OsR
= L9As0OsR
LN{SEA LEVEL VALUE OF DENSITYsMETRIC) N&4DENS
- LsAsOsR

=-ZP3 = LsAsOsR

ORIENTATION ANGLE OF DELTA V VECTOR
FL PT DIFF BET BURNOUT ANC NEXT SEC
HG TIME BET BURNOUT + NEZT WHOLE SEC
ECCENTRICITY OF MERC SPHEROID SQUARED

1,00673852 INVERSE OF MERC SPHEROID SEMIMINOR AX1S SQUARED

790543827

1.0

13602540
«058833543
7¢29211508E-5
¢00437526905
1g~15

2000
64283185307
1457079632675
14176640
524615384

-0

-1

HG UNITS OF LENGTH/HG UNITS OF TIME N4COEF
DENSITY MUTILATION COEFFICIENT N&4DENS
CRITICAL ALTITUDE DENSITY FORMULA N&PDEN
ROTATIONAL VELOC OF EARTH (HG UNITS) N4DRAG
ROTATION OF EARTH IN RAD/SEC

ROTATION OF THE EARTH AQSTAD
TEST IF F CONVERGED ASSUMED VALUE

STORE EVERY 2000TH INTEGRATION STEP R5RARF

HALF PI IN RADIANS POSWIP

LPBD SCALE FACTOR FOR ABSCISSA

KM0140
*KMUBO
*KMUYDS
*KSeLNG
*KSeUND
*KToGHT
*KT«MPE
*KTFLMN
*KTHEMN
*KVDeOR
*KVELMN

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

-1e0
«02538390
6975224419
160e41646
2040463333
17220540
288416
2734579971
13,209693
«017504469
2330644968

MERCURY TIME OF BURNOUT
NUMBER OF YARDS IN ONE MERCURY UNIT

PROPORTIONALITY CONSTANT==CS=TM EG

BASE MOLECULAR SCALE TEMP IN DEG K
TIME OF FALL MEAN IN SECONDS

THETA MEAN IN DEGREES

VELOCITY 454 FT PER SEC HG UNITS
VELOCITY MEAN IN FT/SECOND

4.3.2 Constants (Numerical Order)

K0g1S1
KM0O000
K00 eG2
K00eB6
KCeB6P
KQOQeH2
KOOeB4
K0OeAb
K00eGO
K00aB2
K6(H) e
Ke120G
KQeB4P
K6(Gle
KO+A6P
KOO eHC
KO«B2P
KM0001
KMO1 U
K00eA4
K00«A2
KOMIN3
KGAMMN
KOJA4LP
KO.A2P
K00000
KOZERO
K0.CTB
KeTCTB
KFEEBD
KCNVRG
K04 M5
K« OMES
K00«G3
KeDLTA
K0O«SH
KQOeH3
KOeb6E4
KECRST
K00.C2
KOesALT
KeRTER
KeECC2
K00.G1
K843M3
K00.01
KeQl6B
K0+S1D

PZE
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

~0000
~00000009904103
~0000.002708609
~00C001136740
=0000+0139550265
~0000405999091
=000040682
~000060963348773
=00000110635752
=-0000.1988341488
=~000062094395102
~000026060681
~0000e2947837748
~0000.31559193
~0000¢5
=~000054653605
=-0001

-0001.
~0001+0424
-0001409306667
-0003
~0004.211550
~0004.82397487
-000541099041
00000

00000

1E-15

1E~-15

2e¢0E=7
00000.,000017

00000.0000434146436CONVERTS FROM KG/M CUBED TO HG UNITS

IF ONESMUTILATE DENSITYsK ONCE SET

=ZP5 = L#As0O9R

GAMMA MEAN IN DEGREES

TEST IF F TABLE CONVERGED ASSUMED
TEST IF F CONVERGED ASSUMED VALUL

CONVERSION CRITERION

00000.0000729211508ROTATION OF EARTH IN RAD/SEC

00000.0000796407
00000400066451326
00000.0012394486
00000+0015790344
00000.0028672914
000004003
00000+00324696
00000.00333874
00000.00437526905
00000.0066934215
00000.0074115416
00000.0083
00000401

609000 FT IN HG UNITS
TEST FOR E CRITICAL

ROTATION OF THE EARTH

ECCENTRICITY OF MERCSSPHEROID SQUARED

8e3 MILLISECONDS TO SECONDS
~ZP2=LsA

00000¢01666666666B0HS INPUT TIME CONVERSION CONSTANT

00000.01745241

SINE OF ONE DEGREE

MS 102

R3RVBO
AOSTAD

N&COEF
N4COEF
POSWIP
POSWIP

POSWIP

N&4DENS

IOMANI
POSWIP

N4DENS

N4DRAG
C9RVTH

AQSTAD

LAUNCH

IoHSGB
AOSTAD

4-31

MS 102

KCa1DG
KVDeOR
KOOeBS
KO45ets
KMU B0
K00e08
KeOMEG
KOO eH1
KO0«BO
KN0D481
KOO« MH
KQeB5P
K0«5DG
K0O0O.1
K00«B3
KOslbt
Ke305C
K0O0Oe2
Ke2030
KJGe25
KO.BOP
KOe341
KOO AS
KOCeAl
KOWE1P
KO«B3P
KOO0Q5
KeDELT
K0e550
KeBETA
K0e650
Ke40DG
KC00.9
KGNOOo1
KCO0140
KeMUTE
KeINB2
KOOl e4
K0O+A3
Ke82DG
KOOle5
Kle525
KKKPi2
KO0le75
KOesASP
K00Q02
K002.0
KOeALP
K00Z45
KESEEE
K00003
KQ00340
KOOWLPI
K00004
K004.0
KQO3HPI
K0Q005
KO0O05.
K005.0
KLPBSF
K0O0006
K00640
KKK2P1
KOsA3P

4-32

DEC
becC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DeC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

000C04D174532925 ONE DEGREE IN RADIANS AOSTAD
0000040175044E% VELOCITY 454 FT PER SEC HG UNITS
000004019393189

00000021504685 4509000 FT IN HG UNITS NGDKRAG
0000C«0253839C MERCURY TIME OF BURNOUT R3RVEO
000CC«04 ~ZP2 =~ LsA

00000.058833543 ROTATIONAL VELOC OF EARTH (HG UNITS) N&4DRAG
0000040648396164

00C00+065495756

000004067409063

00000e074366916

0000008247355

0000040872664626 ~IPl = LsA

000001

000C0«104370596

00000144 ~ZP11=0sR

00000¢1454441042E-3~LsAs09R

0000042

00000.20302247 LN(SEA LEVEL VALUE OF DENSITYSMETRIC) N4DENS
00000425

0000030422454

000006341

00000441235

00000446038333

00000+46038360

0000047142857

0000045

00000452 FL PT DIFF BET BURNOUT AND NEXT SEC
000004550 10HSOY
00000459341193 ORIENTATION ANGLE OF DELTA V VECTOR
000004650 10HSGB
00000.6981317008 =ZP3 = LsAs0sR

000004900 P8 = LA

08001

0000140

000G1.0 DENSITY MUTILATION COEFFICIENT N4DENS
00001.00673852 INVERSE OF MERC SPHEROID SEMIMINOR AXIS SQUARED
0CC01let

00001441426667

C00014431169987

0000150

000014525

00001.57079632675 HALF PI IN RADIANS POSWIP
00001475

0000190782077

00002

0000240

00002.28573082

0000245

00002.718281828

00003

0000340

00003414159265

00004

00004, AQSTAD
000044712388975 3 HALVES PI(RADIANS)

00065

00005

0000540

00005424615384

00006

0000640

000064283185307

0000655591931

KOO UT
KQOCC7
KOO0G8
K00009
K00010
K01040
K00C11
K00012
K000132
KTHEMN
KO13e4
K00015
K00016
K00017
K00018
K0CO19
K00020
KSeUND
K00021
K00023
K00024
K00025
K00026
K00027
K00028
KQ00JB
KOOONS3
K00C30
KQ0C031
K00032
K00033
K00034
K00035
KQ00037
K00039
K00040
K00041
K00042
K00045
K00046
Koo047
K00048
K00051
K00052
KQ00053
K0o0054
Ke lRAD
K00060
KO060
K00063
KO0066
K00075
K00084
K00085
K00086
K00090
K00120
K0130.
K0150e
K00154
K0015%5
K00156
K00160
KSeLNG

DEC

EC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DecC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
PZE
DEC
DEC
DEC
PZE
PZE
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

0080648104
00007
00008
00009
00010
00010
00011
00012
00C13
000134209693
00013444684
00015
00016
00017
00018
0oc1le
00020
000200463333
00021
00023
00024
00025
c0Cce6
00027
00028
00030
00030
00030
00031
00032
00033
00034
00035
00037
00039
00040
00041
00042
00045
00046
00047
00048
00051
00052
00053
00054
0005729577951
00060
00060
00063
00066
00075
00084
00085
00086
00090
00120
00130«
00150
00154
00155
00156
00160
00160441646

THETA MEAN IN DEGREES
MINUTES PER HG UNIT OF TIME

PROPORTIONALITY CONSTANT==C5=TM

~LsAsO9R

~IP7 = LA

EQ

MS 102

POSWIP
R5RARF

Na4COEF

IOMANI

IOMANI

MYSCRD

LAUNCH

4-33

MC 102

KOeSF4 DEC 0016248155068 SF& = LashsOsR
K00163 CEC 00163
K00164 DEC 00164
K0C165 DEC 00165
K00l66 DEC 00166
Kogle7 DEC 00167
KoQ168 DEC 00168
KG0179 DEC 00179
KC0180 DEC 00180
K00198 DEC 00198
K00218 DEC 00218
K00219 DEC 00219
K00220 DEC 00220
KC0221 DEC 00221
Ko0222 DEC 00222
K00224 DEC 00224
K00256 DEC 00256
KTFLMN DEC 002734579971 TIME OF FALL MEAN IN SECONDS POSWIP
KT eMPE DEC 00288416 BASE MOLECULAR SCALE TEMP IN DEG K NaCOEF
K0300e DEC 003C0
K0400+ DEC 00400 ~ZP12~04R
K00420 DEC 00420
K00512 DEC 00512 K10P = LsAsOyR
K060Cs DEC 00600
KQe5F6 DEC 006512620273 SFé6 = LsAsOsR
KO«SF3 DEC 0073246697805 SF3 = LsAsOsR
K806+8 DEC 0080648134 SECONDS PER HG UNIT OF TIME POSWIP
K01000 DEC 01000
KOl.E3 DEC 0100060
K01023 DEC 01023 KP3 = LsAsOsR
K01024 DEC 01024 K12 = LsA
K01800 DEC ¢180C
KINTV2 DEC 02000 STORE EVERY 2000TH INTEGRATION STEP RS5RARF
KOeSF5 DEC 024424232602 SF5 = LyAs0sR
K2700+ DEC 02700
KOeMPR DEC 034374746771 ~DGHR
KOesSF1 DEC 058614358244 SF1 = LA
KCeNVF DEC 063784145 KM/HG UNITS OF LENGTH N4DRAG
K07200 DEC 07200
KeMACH DEC 0790543827 HG UNITS OF LENGTH/HG UNITS OF TIME N4COEF
K0sSF2 DEC 1278745 SF2 = LA
K15360 DEC 15360 ~DGHR
KVELMN DEC 2330644968 VELOCITY MEAN IN FT/SECOND posSwip
KCFTSC DEC 259364294946 CONVERSION FACTOR TO FT/SEC POSWIP
K324.E3 DEC 3200040
KOe9E4 DEC 9000040
K10+E5 DEC 10000040
K o«N4HC DEC 13602540 CRITICAL ALTITUDE DENSITY FORMULA N4PDEN
KLeHGT DEC 14176640
KT+GHT DEC 17220540
KO+RAD DEC 6378145, EQUATORIAL RADIUS OF EARTH IN METERS N4DRAG
KMUYDS DEC 6975224419 NUMBER OF YARDS IN ONE MERCURY UNIT AOSTAD
KCDoCV DEC 33693917342
KCDoCW DEC 38166057843
4.3.3 Octal Constants
KOOOP1 PON 0
KOOOP4 FOR 0 MASK FOR A INDICATOR LAUNCH
KOOOP6 SIX 0 MASK FOR A AND B INDICATORS LAUNCH
K00377 OCT 377 ONES IN LAST 8 BITS
KOMASK OCT 1 SENSE INDICATOR MASK N4DENS

4-34

K10000
K40003
KADST1
KAO0ST2
KATTT7
KAZ16M
KBB23Z
KeB33Z
KCBIT2
KCBIT4
KCH200
KCH201
KCH211
KCH232
KCH233
KCH234
KD00O01
Kbooecz
KD0oO003
KDooO4
KDoOoOoé
KD00OO08B
KDpoO12
KD0020
Kboo24
KDo028
KD0OO30
KDOOQ4O
KD0060
KD1024
KD2048
KD7777
KDCMSK
KDUMMY
KFPTBO
KHO9RS
KHGBRS
KLSACM
KMNMSK
KMSK48
KMTRRM
KPENUP
KRMSHS
KRVOHE
KSBTST
KT0001
KT0004
KT0006
KTGMSK
KU1777
KOOOP5

4.4 TABLES

ocCT
ocCT
DEC
DEC
ocT
oCT
ocCT
oCT
ocCT
ocCT
ocT
ocCT
ocCT
ocCT
ocCT
oCT
HTR
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
ocCT
ocCT
oCT
PZE
oCT
ocT
ocT
oCcT
oCT
ocCT
ocCT
oCT
PZE
ocCT
PZE
PZE
PZE
ocCT
ocCT
FVE

10000

40003
¢09244090
10146916761
000000077777
777776777777
0004000000C1
200000000001
200000000000
040000000000
200000000000
201000000000
211000000000
232000000000
23300000000¢C
234000000000
09091

09092

XE

XX

02096

298

0912

2920

2924

9928

9930

940

2960

291024
292048
077777000000
377777000000
201400000000
2090048

17777700
000777777777
037000000000
34

74000000

142

300000000
09190

[

6

700000
233000001777
090

MASK LIFTOFF BIT IN TelEMETRY
ENABLE DCC AND CHANNELS A + B

MASK FOR OQUTPUT BIT NUMBER 83

K8 - LeA9OR

K& - LA

MASK FOR LAUNCH PRINT SIGNAL {ABO1)
MASK FOR LAUNCH PKRINT SIGNAL (CAPS)

CONVERT FX TO FL PT + DIVIDE By 2

-5CD

KS - LeAs0eR
K13 = LsA

KIP = LA

KZP = LsAsOsR

FPS—16 CODE FOR TMLANA+29
AZUZA CODE FOR TMLANA+29

COLOR R (IR}

K9 =~ LsA
Ké = LsAsOsR

MASK TO KEEP DECREMENT
DUMMY DELTA FOR FIRST ITERATION
FIXED POINT TIME FOR BURNOUT
TIME CONVERSION CONSTANT
HS GEB INPUT TIME CONV CONSTANT
MASK ACTIVATE LOW SPEED INPUT

- LA
MASK FOR BITS 4=-8
TELEMETRY MASK RR BITS
CONSTANT TO LIFT BOTH PENS
HS INPUT TIME CONVERSICN CONSTANT
INDICATION OF RV OR HERGETS ELEMENTS
STAND BY TEST CONSTANT

K7P = LsA9OsR
K7 = LsAsOR
MASK TO KEEP TAG
K3 ~ LsAsOsR
LAUNCH

MC 102

LAUNCH

I0HSGB
10HSGB
10H5GE

MPSTRP
MPSTRP
POSWIP

POSWIP

I0HS09
10HSGB

IoHSGB

A machine-printout listing of tables is reproduced on the following pages.
From left to right, the name of thetable is listed first; the pseudo-operation and
its variable field are presented next; third is an identification column, if applic-
able; last is printed the name of the program with which the table is associated.

4-35

MC 102

OCOOICQQQTABLES LAUNCH AND oRBIT........'.‘.....‘..........‘...............
KLAMDO BSS 169X DODIFC
TOOOTA PZE NOCPNI
TOOIND PZE TIME AT 4504000 FT(MIN/ADDR#SEC/DECR) N&4DRAG
TODCHC PZE TIME AT 4504000 FT USED BY DC N4DRAG
TODRAG PZE ZERQO=REENTRYs NONZERO FOR RETROFIRE N4DRAG
T1STNO BSS 150 IF ZEROs 1ST ITERATIONy OTHERWISE NOT C9CTRF
T6DELT BSS 90 NOM TIME INTRVALS RETROS R6BOTH
T6HOLD PZE g] g k¥

TAWTPC BSS 88y F WEIGHTED PARTIALS MAX NR LOC=KQOQON¥*KOOOMB
TCBEG1 BSS 740

TCCONS BSS 220940 LAUNCH VARIABLE CONSTANTS

TCCOUT BSS 3040

TCFP16 BSS 15,0

TCIP71 BSS 1550

TCMANR BSS 250X TEMP STORAGE LAUNCHP

TCORBP BSS 169F

TCR3GE BSS 840

TCsuBD PZE COEFFICIENT OF DRAG (HG UNITS) N4DRAG
TD2SSM BSS 15,F SUM(DF##2)/MeFOR EACH STATION

TDCCNT BSS 24450 DODIFC
TDEQCT BSS 249F THE PARTIALS OF R OR COP DODIFC
TOFNDC PZE 180 DETERMINES K=1 OR K(0) TEST

TDNIET PZE LAST VALID TIME TO USE UINTP FOR INPT DODIFC
TONOBR BSS 10X NUMBER OF OBSERVATIONS PROCESSED DODIFC
TDRANV SYN KLAMDO+1 16 LOCNS IN TDRA5V,s INPUT TO NOCPNI

TDSUBX BSS 3sF X COMP DRAG ACCELERATION (HG UNITS) N4DRAG
TDSUBY SYN TDSUBX+1 Y COMP DRAG ACCELERATION (HG UNITS)

TDSUBZ SYN TOSuUBX+2 Z COMP DRAG ACCELERATICON (HG UNITS)

TDTIMT PZE TIME TEST FOR END OF TABLE DODIFC
TDTOBS PZE TIME OB IN SEC FOR NDC DODIFC
TEQCIN BSS 2750

TFESAB PZE FIRST SECOND AFTER BURNOUT

T«DLTA BSS 240 HG TIME BET BURNOUT AND NEXT WHOLE SECRS5RARF
TLSSSE BSS 17F SOLUT TO LEAST SQRSsSEsSE OF ELEMENTS D2SUNE
TM8MNS BSS 19,0 MAXIMUM RADAR MSG TRANSMISSION TIMES

TMALB1 BSS MNNOBB#170 BUFFERS TABLES MSLOGG
TMALB2 BSS MNNOBB¥*17,0 BUFFER TABLES MSLOGG
TMAREA BSS 1440 LONGITS OF EMERG RECOV AREASsFT PT RADRSRARF
TMBBNI BSS 1550 NUMERTCAL INTEGRATION BUFFER BLOCK MON
TMBFBK BSS MNCHAR+10+0 BLOCK FOR READING ERR CORR STAT CHAR MZSCRD
TMCHAR BSS MNSCNO#MNCHAR+1s0 STATe CHARACs TABLE LENGTH+1 LOCN. MON
TMCMDA BSS 1445 TABLE OF 1/0 COMMANDS MYMESS
TMCYCL BSS MsS CONTROLS TRANS TO CYCLED ROUTINES MTHFSC
TMCYNO BSS MsS CONTAINS FREQ OF HANDLING ROUTINES MTHFSC
TMDARE BSS 1440 DELTA LONGIT CORRSP TO 5 M@ IN REC A RSRARF
TMDTBO DEC 22 DELTA TIME TO BURNOUT

TMECT1 PZE

TMECT2 PZE

TMENDP BSS 240 LAT(+1=LONG)OF SUB-CAPS PT AT REENTRY

TMERCN BSS 2840 MON
TMERMC BSS 3640

TMETRP PZE

TMETRS PZE

TMFMSK BSS 1240 MASKS FOR TURNING OFF INDICATORS

TMFRPR BSS NsS CORRELATES PRIOR + ROUTS TABLE NRS MOPRIO
TMGEB1 BSS 740

TMGEDS BSS 290 DISCRETE AND TIME TAG

TMGMT1 PZE

4-36

MC 102

TMGMT2 PZE

TMH1DB BSS 70 GEB COMPUTED DATA OQUTPUT BLOCK LAUNCH
TMH2DB BSS 790 IP709 COMPUTED DATA OUTPUT bLOCK LAUNCH
TMH1TM BSS 4490 GEB DISCRETE SIGNAL OUTPUT BLOCK LAUNCH
TMH2TM BSS 290 IP709 DISCRETE SIGNAL OUTPUT BLOCK LAUNCH
TMHEDP BSS 7 TABLE HS RAW RADAR PARAMETERS

TMHRAE BSS 30140

TMHS1T BSS 340 GEB TELEMETRY TIME OUTPUT BLOCK LAUNCH
TMHS2T BSS 340 IP709 TELEMETRY TIME QUTPUT BLOCK LAUNCH
TMHSL1 BSS 4840 BUFFER FOR HS INPUT NRel MTHSI1
TMHSL2 BSS 48+0 BUFFER FOR HS INPUT NRe2 MTHSI 2
TMIMPP BSS 1040 IMPACT DATA FOR RETRO FIRING N4DRAG
TMINRT BSS 8

TMIPT71 BSS 70

TMLANA BSS 3095 INPUT TABLE FOR OOLANA OOLANA
TMLCP1 BSS 490

TMLCD2 BSS 350

TMLDLA BSS 490 DELTA LONGS REC AREAS R5RARF
TMLMPT BSS 490 LONGS REC AREAS RS5RARF
TMLOUT BSS 450

TMLSDB BSS 19450 REFERA PARTIC STATIONS IN TMRM I0TTIN
TMLSOX BSS MNOLSY»0 FINAL ACQUIS. DATA QUTPUT BUFFER OOoLSTY
TMLSOY BSS MNOLSY O FINAL ACQUISe DATA OQUTPUT BUFFER OOLSTY
TMMES]1 BSS 2440 CARD IMAGE (MSGNR REQUESTED DISAGR W/1MYMSCK
TMMESZ2 BSS 2440 CARD IMAGE (MESSAGE REQUESTED NON=EXISMYMSCK
TMMES3 BSS 2490 BINe INFOe CARD IMAGE BLOCK TO PRINT MYMSCK
TIAMESS BSS 2540 LOC OF MESSAGE READ FROM TAPE MYMSCK
TMMICL BSS PeS CONTROLS XFER TO CYCLED ROUT MYMINS

TMMINO BSS Psl CONTAINS FREQe OF HANDLING ROUT MYMINS
TMMRLP BSS 290

TMNMSK BSS 1250 MASKS FOR TURNING ON INDICATORS

TMNTRF BSS 450 TIMES TO FIRE FOR 192+3 ORBS R5RARF
TMOGOD BSS 1650 OUTFUT FROM —=eeee {(PACKED wORD)

TMOLAB BES 1350 QUTPUT FROM OOQORRE (PACKED DATA)

TMOREZ> BSS 50040 MON
TMORMC 835 3640 CUTPUT TABLE 050RMC
TMCORRE £35S 3040 MAKES A DOUBLE BUFFER OUT OF TMORMCe MPORRE
TMOXCLl £58 4

TMOYO1l B8SS 490 DATA TABLE MYTTOY
TMPANL BSS 11%NsC MOSAVE QUTPUTs 11 LOCNS EA ROUTINE MON
TMPRIO BSS NsS PRIORITY TABLE MOPRIO
TMPRLG BSS 2+0 LOG BUFFER OF CN LINE OUTPUT MON
TMQKEY BSS NsS QUEUEING TABLEs KEYS FOR VAR QUEUES MOPRIO
TMQKY2 BSS NeS LIMITS NO OF QUEUE ENTS TO QUEUE MOPRIO
TMRARF ESS 1540

TMREFR 88S NeS PRIORITY REFERENCE TABLE MOPRIO
TMREST BSS MNNWRE O INTERMEDIATZ RESTART bUFFER MYWRRS
TMRM18 BSS 20340

TMRM19 BSS 20340

TMRST1 BSS MNNWRB+MNNWR1+MNNWR2 0 RESTART BUFFER

TMRTCC BSS 31,0 TRANSFER TABLE IN ORDER BY SC NR MORTCC
TMSAVE BSS NsS CONTINS 1ST LOC TO SAVE FOR EACH ROUT MOPRIO
TMSLOP DEC 1682 REL BET SPEED OF CAP CLOCK AND GMT O5RARF
TMSSEC DEC 60180 PRESENT CAPSULE SETTINGsSECONDS#B35 050RMC
TMSTAD BSS 1640 GENER ACQUIS DATA(TsRsASE()IOOLSTY CONVMON
TMSTCH BSS 37+0 REF TABLE FOR 5TAT CHAR MYSCRD
TMSTMS BSS 1540 REFERENCE TO TMRMES FOR DODIFC MON
TMTFEA 255 14,40 TIMES TO FIRE FOR EMERG RECOV AREAS R5RARF
TMTMLL BS Ts0 TELEMETRY AND TIME TAG LINE 1

TMTML2 BSS T+0 TELEMETRY AND TIME TAG LINE 2

TMTTIN BSS 1840 REF TAELE FOR TTY INPUT DATA BLOCKS MTTTIN
TN4LLH BSS 3sF OUTPUT BLOCK FOR A2CSCP N4DRAG
TN4NEX PON SETONE CHANGED ONLY DURING REENTRY N4DRAG
TN7ICT PZE NO OF TIMES CONV TEST FAILED IN N2EXCR

4-37

MC 102

TNTN12
TNDCIN
TNDRAG
TNEARM
TNETIM
TNFUNK
TNIINT
TNINT1
TNINTZ2
TNINT3
TNINT4
TNINT3
TNINTE
TNINTT
TNINT8
TNINTO
TNNDCI
TNOMFS
TNSAVR
TNSCOR
TNUMNI
TNVSC
TODCHC
TOMEGD
TPA«RX
TPWTDF
TRAVAD
TRERTH
TRVIBO
TRVTAP
TSETCT
TSTWTS
TSVSEE
TTHRUS
TTIMES
TVELOC
T22222

4-38

PZE
PZE
BSS
PZE
PZE
BSS
BSS
BSS
8SS
BS8S
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BS5S
BSS
Pzg
BSS
PZE
PZE
BSS
BSS
BSS
DEC
BSS
BSS
BSS
BSS
BGS
BSS
BSS
PZE
BSS
ORG
DEC
ORG
DEC
ORG
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

740

TIME
409 F
940
220040
1800,0
11240
11240
11240
112,40
11240
11240
1040
1540
1540
&
17X

NOe

1890

69F
11,F
1740
le0
790
134F
12,0
33,0
69F
950
940

0

KLAMDO
1406272864
TEDELT

INDICATORsO=FROM N1SOFT+1=N2EXCR

INDICATOR FOR METHOD TC CALC PARTIALS

INPUT BLOCK FOR N4DRAG

ANCHOR POINT

FIXED POINT SECONDS

OF LAST ENTRY IN NI TABLE
INTERMEDIATE CUTPUT TAELE

INTERMEDIATE

OUTPUT TABLE

INTEGRATION (REGULAR) TABLE
INTEGRATION (ABORT) TABLE

FIRST LOCATION PERTURBED X TABLE
FIRST LOCATION PERTURBED Y TABLE
FIRST LOCATION PERTURBED Z TABLE
FIRST LOCATION PERTURBED X DOT TABLE
FIRST LOCATION PERTURBED Y DOT TABLK
FIRST LOCATION PERTURBED Z DOT TAbLE
REENTRY TABLE FOR TIME TO FIRE CALC.

15 WORD INPUT BLOCK
OF OBSERVATIONS DESIRED FROM EACH STATION
CF LAST VALID RV

LOC.

NOCPNI TESTS FOR TABLE NR
KS FOR COMPUTING F(1l}

TO NOCPNI

(TNINT=)
FOR HALF=STEP

TIME AT 4509000 FT,
VALUE OF OMEGA DOT

W(DFIMAXeNR

OF LOCNS=%(KOOOMB)

RADIUS OF THE EARTH
OUTPUT FROM UTINTP TO R6BOTH

WEIGHT WORD TABLE

VELOCITY VECTOR MAGNITUDE

BSS 9

1249509795695 950920950

TCCONS

«5

25

20

Oe0

¢9557638
16022883455
100003643
1.000009664
le0463218
¢97763793004
26640
-e2620152644

[eNeNoNole)

34651613E~10
0.0
14308742E~05
=14532237E-04
005059132

DELTA T SUB ND
F(SECONDS)
G({SECONDS)
H{SECONDS)

CONVERSION GE=B TO HG(R)
CONVERSION GE~=B TO HG(V)

CONVERSION IP=709 TO HG(V)
CONVERSION IP-709 TO GE-B(R)
CONVERSION IP=709 TO GE-B(V)

C(SECONDS)
B RADIANS/GE~B(V)

K5
K&
K3
K2
Kl

84
84
84

84

K4 89 FOR

K3 89 S NOM

K2 89

Kl 89

KO 89
(V/VR)INOM
BELOW
STAGING

(HG UNITS)

-0 -NoWweE WN=O

- O

17
18
19
20
21

N7VARS
DODIFC
N4DRAG
NOCPNI
NOCPNI
NOCPNI
NOCPNI
NOCPNI

RINDCP
RINDCP
RINDCP
RINDCP
RSRARF
R1INDCP

N7VARS

RINDCP
N7VARS

DODIFC

POSWIP
R5RARF
DODIFC
DODIFC
DODIFC

R6BOTH
R6BOTH
N4DRAG

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

DEC
DEC
DEC
DEC
DEC
BEC
DEC
DEC
DEC

DEC

44B44T71TE~13
-0e2195182E~9
le614467E~E
1¢219781E-5
-0e001598267
0e3885452
1,0455
3291458325
25040

2e5
«00955765¢8
«058833543
¢2389409468E~3
« 005400076092
¢999251039

345

2092567245
-145819827
15276450249
¢729211508E~4
5054415
«493652887
0999251039
-16406416522
1457079632679
14259572909
3443,929
265294807

4096

2048

1024

512

256

128

64

32

16

8

4

2

1
—e32619444E-04
+e82729604E-03
-e53157966E~02
+e19077357E~01
-e9845195E-05
+¢58733290E-03
+¢12643158E-01
+400382306272
259364294946
—-+032338615
+e04T744618
+4006608992
3040
0912235153
«02150472780
~5¢071115E~13
~54427866E-13
40209581E-8
=646684TTE=6
2e6652569E~4
04007767488
001331041E-9
-0¢1168537E-6

K13 84 (V/VR)INOM 22
K12 84 ABOVE 23
K11l 84 STAGING 24
K10 84 25
K9 84 26
K8 84 27
RADIUS OF EARTH GE-B 28
CONVERTION GE~B TO Ne MILES 29
TIME TO FIRE RETROS 5 HIT AREA A 30
TRANSMISSION DELAT TIME 31
A(2009000 FT)HGe 32
OMEGA RAD/HG UNIT OF TIME 33
HF1 (5000 FT - MERCURY UNITS) 34
HF2({113+000 FTIHG 35
RADIUS OF EARTH HG 36
L{SECONDS) 37
CONVERT HG TO FEET 38
K1l 81 39
K2 81 40
OMEGA E RAD/SEC 41
LONGe OF PAD AT LIFTOFF 42

RADIANS -~ GEOCENTRIC LATes OF RADAR3
{HG)DISTANCE FROM GEOCENTER TO PAD(RO) 44

LP PRIME(804581731) (RADIANS) 45
PI/2 RADIANS 46
BETA ZERO 47
CONVERSION HG TO Ne MILES 48
CONVERSION GE-B TO FT/SEC 49
MASK 50
MASK 51
MASK 52
MASK 53
MASK 54
MASK 55
MASK 56
MASK 57
MASK 58
MASK 59
MASK 60
MASK 61
MASK 62
OEFFICIENTS TO CURVE FIT 63
ELOCITY OF ESCAPE ROCKET 64
S A FUNCTION OF ALTITUDE. 65
eEes BELOW 804000 FT(HG) 66
COEFFICIENTS TO CURVE FIT 67
ELOCITY OF ESCAPE ROCKET 68
BOVE 80,000 FT(HG) 69
805000 FT(HG) 70
CONVERSION HG TO FT/SEC 71
COEFFICIENTS TO OBTAIN 72
H MIN RET AS A FUNCTION 73
OF VELOCITY(V1Z MAG)HG 74
30 SECONDS 75
B (VELOCITY 23,660) MERCURY UNITS76
4505000 FT(HG) 77
K21 83 _ 78
K20 83 GAMMA 79
K19 83 NOM 80
K18 83 BELOW 81
K17 83 STAGING 82
K16 83 83
K26 83 GAMMA B4
K25 83 NOM 85

MC 102

4-39

MC 102

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
ocT
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
ocT
DEC
DEC
DEC
DEC
DEC

4-40

Ce3B8CT7413E=-4
=-0+007518138
Ce$3710C1

G0
073256415%E~3
144747978
11267406
347876281
200476474885

K24 83 ABOVE
K23 83 STAGING
K22 83
ALPHA(SECONDS)
VP (MERCURY UNITS)
K2 50 COEFFICIENTS TO
K2 50 OBTAIN ACCEL. VS
K1 50 VELOCITY(GE=~B)
DELTA LONG(e273 TOLERANCE)IRAD

$000 ARTIFICIAL TIME TO FIRE RETRO ROCKETS

132040
3441435029
2339143384
~441594
«28548238E-9
e68265288E~9
+62475098E<€
¢59100400E-5
¢31345620E-5
~e43086694E-2
¢23747061E-1
e 44627038E-1
« 66648080
«27185713E+1
e 14873996E+2
«86767697E+2
5816242093
001000000000
07853981624
061396263401
0

5450651379
5456760031
565312144
5477878515

c
74033676885
50

0

0

0

6400393262
0334517988E~3
«570722665
80648104

COO0OO0OOCOWHFErWNH—HO

5093411945
000074000000
240
753869034
-1.40581257
0497259538
20000000

S STRIP SECONDS

RADIUS OF EARTH Ne MILES
MEAN VALUE OF VELe FT/SEC
MEAN VALUE OF GAMMA
EMPIRICAL

CURVE

FIT

CONSTANTS

EMPIRICAL
CURVE

FIT
CONSTANTS

1 IN CHARACTERISTIC

MAXes PLOT BOARD VALUE RADe
START OF TABLE

LONG OF AREA A RAD.

LONG OF AREA B RADe

LONG OF AREA C RADe

LONG OF AREA D RAD.
LONG OF AREA E
LONG OF AREA XB RADe
END OF TABLE
NOT USED IN LAUNCH
NOT USED IN LAUNCH
NOT USEC IN LAUNCH

LONG OF AREA E RAD.

EPSILON(T7s000)HG

(32e7)INCLINATION ANGLE DEVIATION(R)

HG TO SECONDS

CODE FOR AREA A

CODE FOR AREA B

CODE FOR AREA C

CODE FOR AREA D

CODE FOR AREA E

CODE FOR AREA XB

NOTUSED IN LAUNCH

NOTUSED IN LAUNCH

NOTUSED IN LAUNCH

NOTUSED IN LAUNCH

NOTUSED IN LAUNCH

NOTUSED IN LAUNCH

LONG AREA E PRIME({RAD)
60 AT BINARY SCALE OF 17

DELTA T USED IN V/VR CALCULATIONS

CONVERT SEC TO GE-B UNITS
LONGITUDE OF PAD (=80e547114 DEGREES)
GEODETIC LATe OF PAD (28B44508729)

CONVERT FROM GE-B TO FEET

116
117
118
119
120
121
122

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
lal
142
143
144
145
146
147
148
149

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
LEC
DEC
DEC
DEC
LEC
DEC
DEC

DEC

ocT
oCT
oCT
ocCT
ocCT
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

[eNeNoNe/

=0eGC00C44
+0400042
+0400625
-0.00020
+0 998142
—0e00C47
+Ce0Q0C13
+0.00623
~0400013
+0598028
~000C10
+0e0C025
+0e00595
=0400015
+3e997925
~0400003
+0400023
+0e002578
~0s00014
+0e997802
=0.00007
+060001¢€
+0.00571
=-0.00012
+0597665
~-0.00016
+0.00005
+0.00565
=0.00007
+0e997493
30600
27000
26000
25000
23000
220900
21000000
23000000
17000000
16000000
15600000
140060000
130200000
12000000
11000000
10000000
70060000
24000
0¢84
50872771
-83.680596
34.800786
¢0293445]15
-¢25351989
¢55917158

10068147688
~e113238E~-3

#320393E=4
¢551194E=2

~e687252E-4

ORBIT
CRBIT
OROIT
ORBIY
OR31T
CRBIT
ORBIT
OR3IT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORZIT
ORBI1T
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORBIT
ORSBIT
ORBIT
3 POS1
2 POS1

10 PNTS USED 70 CALC.

PNTS
PNTS
PNTS
PNTS
PNTS
PNTS
PNTS
PNTS
PNTS
PNTS

OHMNWHrVOEONOWO

INSUFFICIENT DATA 70

LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETINE
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME
LIFETIME

CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
COMNSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
COMNSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS
CONSTANTS

¢ ROCe FIRED PRINT
» ROCe FIRED PRINT
1 POSle ROCe FIRED PRINT
2 POS1 ROCe FIRED PRINT SIGNAL
NO GO 1S RECOMMENDED PRINT SIGNAL
GO I5 RECOMMENDED PRINT SIGNAL

USED T0
USED TO
USED TO
USED TO
USED TO
USED TO
USED TO
USED 10
USED TO
USED TO

Kle7
K27
K3y,7
Kase?
K5e7
Kls6
K29€&
K3eé
K496
K996
Kls&
K245
K3,2
K&4s&
K545
Kles
Klsb
K3s&
Kb494
K594
Kle3
K293
K3¢3
Ké&ye2
K593
Kle2
K292
K3s2
K& 2
K592
SIGNAL
SIGNAL
SIGNAL

FINAL GO=~NQ~GO

CALCs FINAL GO-NO=GO
CALCe FINAL GO-NO-GO
CALCe FINAL GO-NO-GO
CALCe FINAL GO=-NO-=GO
CALCes FINAL GO-NO-GO
CALCe FINAL GO-NO=GO
CALCs FINAL GO=NO=GO
CALCe FINAL GO-NO-GO
CALCe FINAL GO-NO-GO
CALCe FINAL GO-NO=-GO

BREAK POINT FOR TAIL OFF

COEFFICIENTS FOR

TAIL OFF ACCELERATION
FIRST HALF OF CURVE
2ND HALF OF CURVE

MAKE GO-NOGO REC.

ACCERL FIT

CONSTANTS FOR VGO CALC

154
155
156
157
158
159
160
i61
162
163
164
165
166
167
168
169
170
171
172

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

MC 102

4-41

MC 102

DEC
PZE
ORG
DEC
DEC
DEC
DEC
ORG
PZE
PZE
ORG
DEC
ORG
PZE
PZE
ORG
PZE
PZE
ORG
DEC
DEC
DEC
ORG
IOCPN
10CT
10CP
10CP
I10ORP
I10RP
10RP
IORT
10CP
10CP
10CP
TCH
10CP
TCH
ORG
PZE
PZE
ORG
PZE
PZE
ORG
DEC
DEC
ORG
DEC
DEC
ORG
ocCT
ocCT
ocCT
oCT
oCT
oCT

ocCT
ocCT
oCT
ocCT
ocCT
ocCT
ORG
PZE

4-42

04997404
239940959
TCCOUT+5
+497418836
—-14404990047
¢497418836
~14404990047
TCFP16+13
TCCOUT+1
TCCOUT+3
TeDLTA

0490
TCIPT1+13
TCCOUT+1
TCCOUT+3
TCR3GE+6
TCCOUT
TCCOUT+2
TMAREA

214
MAXIMUM DISPLAY VALUE FOR DELTA TR 215

LAT CAPE PAD COORD
LONG CAPE PAD COORD
LAT CAPE PAD COORD
LONG CAPE PAD COORD

o
n
n
N

BSS 14

0e75049169149722221934543018494429351009549690260
0e715585091497222219345255651944223696819549515727
0e66577189216937315593452556519402062435

TMCMDA
QDo
TMMESS»0925
TMMES2+09 24
TMMES3+09 24
09090

09090

0090

09090
TMMES1+09s 24
TMMES3s09 264
TMMESS+190924
TMCMDA+4
TMMES1909 24
TMCMDA+4
TMCYCL
MNORMC9s 09 24
MNMINSs09120
TMCYNO
090924
0309120
TMDARE

BSS 14

POSITION TAPE

READ 25 WORD MSG FROM TAPE
MSG NO REQSTED OUT OF RANGE
NO REQUESTED IN BINARY

MSG NO FOUND AND REQSTED DISAGREE
NO REQUESTED IN BINARY

PRINT MSG READ FROM TAPE

MSG NO FOUND AND REQSTED DISAGREE
BSS MsS

MUST BE LAST ENTRY IN TMCYCL
BSS MsS

MUST BE LAST ENTRY IN TMCYNO
B85S 14

0008905001047 5e0008739400096054000925940009259001030
¢000908+0001013540009259+000978+40009789¢0009789¢001047

TMERMC

BSS 36

0909090909090909090909190909090+0+0
0s090+s0509000909090+030909090909090

TMFMSK
377771777777
5771771777777
6TTTITI777777
37777777777
57777771777
1677177177777
713779777777
1757177177777
776777777777
TI7377777777
6003777777177
177797777777
TMHEDP
TMHRAE+1

BSS 12 TRNOF MASKS
TRNOF
TRNOF
TRNOF
TRNOF
TRNOF
TRNOF
TRNOF
TRNOF
TRNOF
TRNOF
TRNOF C THRU K
TRNOF A AND B

RXCIGMMONG®>P

MC 102

PZE TMHRAE+] 2
PZF TMHRAE+1 3
PZE TMHRAE+2 4
PZE TMHRAE+2 5
PZE TMHRAE+3 6
PZE TMHRAE+3 7
ORG TMINRT

PZE TNINT29G90 BLOCK TO INITIALIZE TMRAKF 1
DEC 8 FOR LAUNCH REENTRY 2
DEC 1 3
DEC 24 4
DEC 2368 5
DEC 0 6
DEC 1 7
DEC 1 8
ORG TMLANA+S

DEC 0497418836 LAT CAPE PAD COORD

DEC ~14404990047 LONG CAPE PAD COORD

DEC ¢ 497418836 LAT CAPE PAD COORD

DEC ~1¢404990047 LONG CAPE PAD COORD.

ORG TMLCD1 BSS 4

PZE »912 IP709 CODE FOR TCCQUT+4

PZE 9912 1P709 CODE FOR TCCOUT+4

PZE s98 RAW FPS~16 CODE FOR TCCOUT+4

PZE 94 GE CODE FOR TCCOUT+4

ORG TMLCD2 BSS 3

PZE 2924 IP709 (FPS—=16) FOR TCCOUT+29

PZE 2928 IP709 (AZUZA) FOR TCCOUT+29

PZE s924 RAW FPS=16 CODE FOR TCCOUT+Z9

ORG TMLDLA BSS &4

DEC ¢0010305¢000978+400094354000943

ORG TMLMPT BSS 4

DEC 5033023569522027989541050881+541050881

ORG TMLOUT BSS 4

PZE CCSTIP IPT709 ENTRANCE FOR STRIP CHARTS

PZE CCsTIP IP709 ENTRANCE FOR STRIP CHARTS

PZE CCST16 RAW ENTRANCE FOR STRIP CHARTS

PZE CCSTGE GE ENTRANCE FOR STRIF CHARTS

ORG TMLSDB BSS 19

PZE TMRMO 1

PZE TMRMO 2

PZE TMRMO 3

PZE TMRMO4

PZE TMRMO5

PZE TMRMO 6

PZE TMRMO 7

PZE TMRMQO 8

PZE TMRMOS

PZE TMRM10

PZE TMRM11

PZE TMRM12

PZE TMRM13

PZE TMRM14

PZE TMRM15

PZE TMRM16

PZE TMRM17

PZE TMRM18

PZE TMRM19

ORG TMMES1 BSS 24

VFD 036/1000210109036/600000

VFD 036/20000002+036/7/204000000

VFD 036/10000002000+036/71000000

VFD 036/4000000209036/430020000300

VFD 036/2050444006004036/302000121000

4-43

MC 102

VFD
VFD
VFD
VFD
VFD
VFD
VFD
ORG
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
ORG
PZE
ORG
PZE
ORG
ocT
oCT
oCT
ocT
ocT
ocCT
ocT
ocT
ocT
ocCT
ocCT
ocT
ORG
DEC
ORG
PZE
PZE
PZE
PZE
ORG
PZE
PZE
PZE
PZE
ORG
DEC
ORG
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE

4-44

036/4000102400009036/5000010000
0367/10000045036/210040400
036/1400020101009036/40002000
036/20000004000+036/0
036/140013010124+036/4210040100
036/4015200010009036/612021500600
036/234044666612+036/121044233000

TMMES?2

BSS 24

036/2200003000005036/400000002000
036/100000000004+036/100000000000
036/4040C0009036/74000
036/2000150+036/4100000
036/1010240504009036/222002210000
036/20000040009036/41110000000
036/202005036/4040040400
036/4006000010029036/10201001000
036/40100000004036/0
036/10600020052+036/54141045400
036/1220066403009036/500004300000
036/641160115404+036/223212012000

TMMICL
MNWRR S0 9 MNDNMN
TMMINO
090 » MNDNMN
TMNMSK
400000000000
200000000000
100000000000
40000000000
20000000000
10000000000
4000000000
2000000000
1000000000
400000000
177400000000
600000000000
TMNTRF

BSS P
BSS P

BSS 12
TRNON
TRNON
TRNON
TRNON
TRNON
TRNON
TRNON
TRNON
TRNON
TRNON
TRNON
TRNON
BSS 4

TRNON MASKS

ARCIGTMMOONT®IP

C THRU K
A AND B

496805,550800604804+60480

TMOX01
09094
09040
09050
TMLSOXs 931

TMOYO1
* %

*3

TMLSOYs Q9 *#0
TMRARF

BSS 4

STATION NUMBER EST HORIZON GROSS TIME
SeCe MASK FROM STATION CHARACTERISTICS
LOGGING TIME FROM AJACG MACRO

WORD COUNT LOC OUTPUT BLOCK OF OOLSTY.
BSS 15

0909090909090909891909236890s190

TMRTCC

MTSENSs 0 s TMSENS
MTTTINsOeTMTI1?
MTTTINsQO»TMTILG
MTTTIN»OsTMTI1S
MTTTINsOs TMTI14
MTTTINsOs TMTI13
MTTTINsOsTMTI12
MTTTINsOs TMTI11
MTTTIN»O»TMTI1O
MTTTINsOsTMTIO9
MTTTINsG»TMTIOB
MTTTINsOsTMTIO?

BSS 31
SENSE OUTPUT~31

TTY IN 16 SeCe 29
TTY IN 15 SeCe 28
TTY IN 14 SeCe 27
TTY IN 13 SeCe 26
TTY IN 12 SeCe 25
TTY IN 11 SeCo 24
TTY IN 10 SeCe 23
TTY IN 9 SeCe 22
TTY IN 8 SeCe 21
TTY IN 7 SeCe 20

wN

PZE
FZE

| PZE
f PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
ORG
ocT
PZE
PZE
PZE
PZE
FZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
®
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
P2E
ORG
MZE
MZE
MZE
MZE
MZE
MZE

MTTTINsOsTMT 106
MTTTINsOs TMTIOS
MTTTINSOsTHMTIOS
MTTTINs Qs TMTICS
MTTTINsGeTMTI02
MTITTINsCeTMTIC!L

MTTTOYs s TMYBOX
MTTTOX 909 TMXBOX
MTINTVeCes TMINTV
MTWWVIe090

MTHFSCs 09 TMB43M

MTHSOP 9 G» TMHSOP
MTHSOD s 09 TMHSOD
MTHS09+09 TMHS09
MTHSGB+ 09 TMHSGB
TMSTCH
717717771777
TMCHAR-1
TMCHAR+MNCHAR-1
TMCHAR+2#MNCHAR=-1
TMCHAR+3#MNCHAR=-1
TMCHAR+4 #MNCHAR=-1
TMCHAR+S#*MNCHAR~1
TMCHAR+6*MNCHAR~1
TMCHAR+7#MNCHAR=-1
TMCHAR+8#MNCHAR-1
TMCHAR+9#MNCHAR=-1
TMCHAR+10#MNCHAR~1
TMCHAR+11 #*MNCHAR~-1
TMCHAR+12#*MNCHAR=-1
TMCHAR+13*MNCHAR=1
TMCHAR+14#MNCHAR-1
TMCHAR+15%#MNCHAR=-1
TMCHAR+16%#MNCHAR=-1
TMCHAR+17#MNCHAR~1
TMCHAR+18¥MNCHAR-1
TMCHAR+19*MNCHAR~1
TMCHAR+20*MNCHAR~1
TMCHAR+21 *MNCHAR=-1
TMCHAR+22 #MNCHAR-1
TMCHAR+23%MNCHAR-1
TMCHAR+24%#MNCHAR=-1
TMCHAR+25%MNCHAR=1
TMCHAR+26#MNCHAR~1
TMCHAR+2T*MNCHAR=-1
TMCHAR+28 #MNCHAR=-1
TMCHAR+29#MNCHAR=~1
TMCHAR+30*MNCHAR~1
TMCHAR+31 #*MNCHAR~-1
TMCHAR+32 #MNCHAR=1
TMCHAR+33*MNCHAR=1
TMCHAR+34#MNCHAR~1
TMCHAR+35#¥MNCHAR~-1
TMSTMS

OO0 00O

MC 102

TTY IN 6 SeCe 19
TTY IN 5 SeCe 18
TTY IN &4 SeCe 17
TTY IN 3 SeCe 14
TTY IN 2 SeCe 15
TTY IN 1 SeCe 14
OPZN SeCe 13
OPEN SeCe 12

TTY OUT 2 SeCe 11

TTY OUT 1 SeCe 10
INTERVAL TIMER SeCe 09
WWV TRAP S5.Ce 08

1/2 SECOND TRAP SeCe 07
OPEN [}

OPEN 5

PLOTTER - &

DISPLAYS - 3

HS IN 2-2

HHS IN 1-1

BSS 37

WILL BE ZERO WHEN STe CHe BLOCK IS LOA

BsSs 15

4-45

MC 102

MZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE
ORG
DEC
CEC
ORG
PZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE
MZE

MZE
MZE
MZE
ORG
DEC

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
ORG
VFD
PZE
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD

4-46

[eNeReReNoleNoReNe]

TMTFEA

BSS 14

453909464T70+4788094B618+49992451060952122
53568+541809556504566404+57660059160959760

TMTTIN

AASQ191910
AASQ2s1410
AASO3s1410
AASQO491410
AASG541910
AASQ0631910
AASOT7+1910
AASQRs1s10
AASQ09»1s10
AAS109s1910
AAS11s1510
AAS12+1410
AAS1341410
AASL4slel0
AAS1591910
AAS16s1910
AAS1Ts146
TNSCOR

BSS 18

BSS 17

19191929293943596969 7978999109111

TNVSWC
«24609375
=e02734375
«01171875
1423046875
041015625
~-e09765625
-¢8203125
«8203125
«5859375
04921875
~e2734375
5859375
-e17578125
«08203125
=¢09765625
«02734375
-e01171875
«01171875
TSTWTS

G/ Tob/304/294/2412/2

4/1%

4/8¢4/8
4/694/594/5
4/694/394/394/3
8/8+4/8

12/8+4/8
4/6912/694/4
4/694/5912/304/2
4/6+94/694/2912/2

WU s w N

18
BSS 33

PASS 1

CANAVERAL
BERMUDA
CANARY
MUCHEA
WOOMERA

*HAWALL
#PTe ARGUELLO

GUAYMAS
WHITE SANDS

EGLIN

000
001l
002
003
004
005
006
007
008

010

VFD
VFD
VFD
VFD
VFD
VFD
vFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD

DEC
DEC
DEC
ORG

4/694/204/b0t/Lats/lats/1 a8/ PASSZ CANAVERAL

G/4esG4/D94/394/394/1 SERMUDA
L4/Bel/294/398/136/194/1 CANARY
4/494/594/304/4 MUCHEA
4/8o&/294/394/194/2 VOOMERA

G/t /Te&/2+4/3 HAWAILI

G4/394 /3447 Tek/3 PTes ARGUELLO

GGyl /B394 / 39404 /2 GUAYMAS
GiGeGa/beb/244/ 04 /4 WHITE SANDS
4/694/394/394/194/194/2 CORPUS CHRISTI
G/G94/Tsb6/ ot/ 94 /104/194/1 EGLIN
4/8B94/1eb4/b04/194/104/1 PASS 3 CANAVERAL

G/Lel /Dol /1ol /394/)s8/1 0471 BERMUDA
G/G604/5447194/304/198/144/1 *CANARY
B/49b/bol/b98/204/194/1 MUCHEA
G/498/Usl/bsl/248/194/1 *YOOMERA

8/8+8/8 HAWATL

4/8+8/8 PTe ARGUELLO
4/894/5+8/3 GUAYMAS
4/394/T94/548/71 WHITE SANDS
4/Bet/294/394/248/1 CORPUS CHRISTI
L4/4s4/Bol/19l/294/1 EGLIN

TTHRUS 385 9

lesles2aslesles2easer2asle THRUST FACTOR TABLE
TTIMES BSS 9
e0148733839,006197243940086761402 MERC UNITS TIME
00061972435 40061972434006197243 THRST TIMING
e00247889729000619724344006197243 TABLE
122222

4.5 COMMUNICATION CELLS

MC 102

01l
012
013
014
015
ole
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

R&6BOTH

R6BOTH
R6BOTH
R6BOTH

Represented below is an actual machine listing of communication cells—
core storage cells used to communicate information from one self-contained
routine to another self-contained routine.

The name of the communication cell is listed in the first column; in some
cases a pseudo-operation (PZE) is indicated immediately following the cell name.
The function of the cell is depictedtothe right of the cell name and, if applicable,
the pseudo-operation code.

MC10UT
MC20UT
MC30RT
MCABRE
MCACQL
MCACQ2Z
MCACTV
MCALBL
MCALBT
MCALM1
MCALM2
MCBETA
MCBTMN
MCBNOT
MCCHEK
MCCNTR
MCCOML1

LOCATION OF CONTROL

oCT 20000120 LAUNCH OFFsABORT REENTRY LIGHTS ON
PZE TMLSOX 9 9 &
ESTIMATE TIME(IN MINUTES)OF HORIZON CROSSING FOR STATION

ACTIVATION MASK FOR RTC SUB-CHANNELS

PZE TMALB1

PZE TMALBZ

PZE 43

PZE 4i

INDICATES ON-OR OFF~LINE STATUS OF THIS 7090
DEC 162

PZE 0

PZE 0

COUNTER USED BY PREF+SUFFIX OF R5RARF

PZE 0 GEB COMPUTED DATA INDICATOR

WORD OF OUTPUT DATA FOR OOCAPL OR QOCAPO
LOCATION OF CONTROL WORD INDICATING WHERE TMOCAP BEGINS
LOCATION TESTED FOR 3D ORBIT

4-47

MC 102

MCCOM2
MCCPNI
MCDIAG
MCDOWN
MCDRAG
MCEFTS
MCESAB
MCFINI
MCFPTX
MCGTIN
MCGTLO
MCHFS1
MCHFSC
MCHOMC
MCHOMS
MCHSOD
MCHSOP
MCHST1
MCHST2
MCISIN
MCISTN
MCLED1
MCLEDD
MCLENT
MCLFTM
MCLGOT
MCLMSG
MCLNAB
MCLNCH
MCLNOR
MCLNRE
MCLST1
MCLST2
MCLTMN
MCLTP1
MCLTP2
MCMARF
MCMINS
MCMPTE
MCMSNO
MCMST1
MCMST2
MCMTPR
MCNRRF
MCOGOD
MCOLAB
MCORRE
MCPASN
MCPASS
MCPGMT
MCPHSE
MCPRLG
MCRADR
MCRCMD
MCRECC
MCREEN
MCRRRS
MCRSTP
MCRTRD
MCRTMS
MCST09
MCSAVE
MCSDHA
MCSECT

4-48

PZE 0 IP709 COMPUTED DATA INDICATOR
PZE TDRANV+15 USED TO UNQUE NOCPNI

CONTAINS COUNT OF ENTRIES TO MODIAG

PZE

NUMERICAL INTEGRATION

MASK USED TO DETERMINE CAUSE OF TRAP ON CHANNEL A

PZE

PZE 040 LAUNCH LOW ABORT FINISHED IF NOT=0Q
DUMMY ON LINE MESSAGE NUMBER TO SHOW LOCes OF FePe TRAP (MTFLPT)
GREENWICH TIME OF INSERTION-FIXED PT SEC

SECONDS FIXED PT MIDNITE TO LIFT OFF(GMT)

ocCT 1

NUMBER OF 1/2 SECONDS SINCE MID-NIGHT PRECEEDING LAUNCH

DEC 5

PZE HIGH SPEED OUTPUT MESSAGE CONTROL STORAGE
NUMBER OF CHARACTERS TO BE SENT ON HS LINE 3

NUMBER OF CHARACTERS TO BE SENT ON HS LINE 4

HS GE-BURROUGHS

HS 709

CONTAINS INTERNAL RADAR STATION NUMBER

BSS 140

STATION NUMBER OF DATA BLOCK TO BE EDITED

EDIT

DIFFERENTIAL CORRECTION

PZE 09040 FLT PT TIME OF LIFT=OFF

PZE LAST TIME CCMAINP GOOD DATA

PZE 09040 CODED MESSAGE NUMBERS LAUNCH QUTPUT
ocCT 300

ocCT 200

ocT 20000040

ocCT 220

PZE 0 GEB HALF SECOND TIME FO LAST ACC MSG
PZE o] 1P709 HALF SECOND TIME OF LAST ACC MSG
BSS 1,F PRESENT TIME IN CCMAIN

WTBB MULTP1

WTBB MULTP2

PZE

PZE CONTAINS MIN SINCE 12 PeMs GMT
NO OF WORDS NEEDED TO COMPLETE MESSAGE

REQUESTED MESSAGE NUMBER(MYMESS)

PZE 0 GEB FIRST DATA FRAME MACH TIME TAG
PZE 0 IP709 FIRST DATA FRAME MACH TIME TAG
TRAP RETURN INSTRUCTION TO PRINT ROUTINE

PZE CONTAINS NO OF RETRO ROCKETS FIRED

NUMBER OF PACKED WORDS FOR LINE 4
NUMBER OF PACKED WORDS FOR LINE 3

ocT 40000020 ORBIT LIGHT OF REENTRY LIGHT ON
CONTAINS PASS NO RELATIVE TO CAPE Coe

PZE 03091

PZE PRESENT GMT FIXED SEC B35

THE PREFIX GIVES INDIC OF PHASE 00~LAU 01-ABOR 10-ORB 11~REEN
LOGGING BUFFER OF ON LINE OQUTPUT (LOG MACRO}

BERMUDA COMMUNICATION BETWEEN MPHSIN AND BIHSIN

10CT TMRST190+0 s MNNWRB+MNNWRI+MNNWR2

PZE 0

PZE
PZE
PZE
PZE
BSS
PZE IP709 SELECTED SOURCE INDICATOR
CONTAINS FIRST LOC IN WHICH TO SAVE PANEL ON INTERRUPT

PZE 0s0+0 FLAG~GOQOD SELECTED DATA ARRIVED
NUMBER OF PRESENT SECTOR PLUS ONEe INITIALIZE AT 2

s0

OO

MC 102

MCSELM PZE 0+0+0 BAD SELECTED DATA COUNTER LAUNCH
MCSELS PZE 04090 SELECTED SOURCE INDICATOR

MCSEN1 TIME FOR LOGGING(MYSENS)

MCSEN2 DCC SUB CHANNEL CONTROL (MYSENS)

MCSGEB PZE 0 GEB SELECTED SOURCE INDICATOR
MCSKPM LOCATIONS TESTED TO SKIP REENTRY TBL MESSAGE

MCSSIP PZE 0s0 SELECTED SOURCE IN PROCESS

MCTABT PZE 09040 ABORT PHASE INDICATOR

MCTDEL DELAY BEFORE ENTERING LAUNCH

MCTEL1 PZE 0 GEB TELEMETRY DATA INDICATOR
MCTEL2 PZE 0 IP709 TELEMETRY DATA INDICATOR
MCTGP1 PZE 090 LAST T INPUT PROCESSs GOOD DATA L1
MCTGP2 PZE 0+0 LAST T INPUT PROCESSes GOOD DATA L2
MCTHLD PZE 0+0+0 HOLD PHASE INDICATOR

MCTHSM BERMUDA MASK FOR H S INPUT BLOCK({MTHSIN)

MCTHSN BERMUDA SAVED INDICATORS(MTHSIN+MPHSIN)

MCTLST PZE 0

MCTLTM BSS 1sF TIME TO FIND TELEMETRY
MCTMO1 BERM LOGGING CODE AND SAVED INDICATORS(MYTMIN)
MCTM02 BERM DCC CONTROL MASK(MYTMIN)

MCTM03 BERM LOGGING TIME(MYTMIN)

MCTMWT TIME TO ENTER LAUNCH

MCTOFS DEC 60180
MCTPOS KEEPS TRACK OF MESSAGE TAPE POSITION
MCTTIN PZE *£0

MCTTOX NUMBER OF PACKED TTY WORDS LINE 10
MCTTOY NUMBER OF PACKED TTY WORDS LINE 11

MCWCH2 PZE 0 IP709 DATA SOURSE INDICATOR
MCWDCT WORD COUNT FOR MANe INSe MESSAGE

MCWWWV PZE 0

MCX4RA CONTAINS INDEX REG 4 AND RETURN ADDRESS (FOR MOSAVE)
MCZRWX PZE

4-49

